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CHAPTER I 

INTRODUCTION 

Recent advances in grid generation, solution algorithms, scientific visualization, and 

computer architecture have made it possible to simulate and analyze flow fields about 

increasingly complex flight vehicles using Computational Fluid Dynamics (CFD). However, 

there is still a significant difference between reality and the overall complexity of the simulations. 

Computational models of flight vehicles that are often labeled as complex or complete are 

usually simplified approximations to the real vehicle. Simulation of unsteady, viscous flow fields 

about vehicles with real operating conditions, such as maneuvering vehicles, varying engine 

conditions, moving or separating components, and separating stores, are typically considered 

too demanding for current technology. In addition, tools available for Scientific Visualization 

analysis of the data generated by time-dependent simulations are not adequate. The underlying 

fluid mechanics of complex time-dependent flow fields is not well understood, and usable 

computational simulation and analysis tools could provide significant insight. There is a real 

need for a capability to simulate and analyze comtlex flow fields about flight vehicles with 

realistic geometry and operating conditions. This research addresses this need for the case 

of flight vehicle configurations with separating stores, moving or separating components, and 

components during maneuvers. These applications are of importance to many DoD agencies 

and the aerospace industry. 

The primary objective of this research project was to produce a research capability to perform 

detailed CFD simulations and Scientific Visualization analysis of unsteady, three-dimensional, 

compressible, viscous flow fields about flight vehicle configurations of interest to the Department 

of Defense (DoD). The target applications include, but are not limited to, separation of single or 

multiple stores from aircraft or missiles, launch vehicle or missile booster separation, separation 



of crew escape modules or ejection seats, separation of fairings, etc. from missile systems, and 

maneuvering aircraft or missiles. Target flow conditions include, compressible flow regimes 

with vehicles operating at Mach numbers from high sub-sonic to moderate hyper-sonic, laminar 

and turbulent viscous flow, and flow of gases in chemical and thermal equilibrium. 

At Mississippi State University, the Computational Fluid Dynamics Laboratory (CFD Lab) 

at the National Science Foundation Engineering Research Center for Computational Field 

Simulation conducts an extensive program of application-driven basic and applied research 

on computer-based simulation and design methodology that encompasses grid generation, flow 

solvers and visualization using both structured and unstructured grid topologies, scalable parallel 

computing, technology demonstrations for leading-edge problems, and integrated simulation 

systems for design environments. The CFD Lab has brought together a group of individuals 

from a variety of engineering and computational disciplines for the common goal of creating 

a software environment that is capable of completing all tasks required for CFD analysis! 1]. 

The creation of this multidisciplinary environment has brought about the development of a rich 

suite of tools that take the problem of solving complex physics on complex configurations from 

geometry to grid to solution through to visualization [2], [3], [4]. This blend of individuals from 

a variety of disciplines is a natural environment for conducting research on the complex time- 

dependent problems for this grant. The capabilities developer' under this grant are a direct result 

of having worked as a cross-disciplinary team created to solve and analyze numerical simulations 

of complex flow on complex geometries. 

As a capstone example of the capability created within the scope of this grant, a simulation 

of a strap-on booster separating from a Delta II launch vehicle was performed. In the overall 

simulation, flow about the complete configuration was initially modeled. Next, the strap-on 

booster by itself was modeled just after separation. During this portion of the time-accurate 

simulation, the strap-on booster tumbles. An integrated six-degrees-of-freedom (6DOF) model 

determines the strap-on booster kinematics based on the aerodynamic loadings. This simulation 

required significant advances in the areas of unstructured grid generation, unsteady solution 
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algorithms, and parallel implementations. Scientific visualization was then used to analyze the 

flow field data from the simulation. The visual analysis of the flow field was done using a suite of 

scientific visualization tools developed in part under this grant. Finally, a movie was generated 

which depicts the flow field physics and strap-on booster kinematics. The movie tracks both the 

motion and flow field variables on the strap-on booster surface and in the surrounding field. 

The research capabilities produced from this grant have provided insight into the fluid 

mechanics of complex time-dependent flow fields for flight vehicles with real operating 

conditions and has and will guide future research in this area. These tools significantly 

advance the state-of-the-art in CFD, Scientific Visualization, and the overall simulation and 

analysis capability available to DoD agencies and the aerospace industry. As an example of 

the capabilities guiding future research, technology developed in part under this grant has also 

been applied to capstone simulations of submarine maneuvers and gust response of a tilt-rotor 

aircraft. 

The following chapters discuss the various fields of study that were investigated to meet the 

objectives of this grant. Chapter 2 provides a background on the grid generation algorithms 

that were used to generate the static portions of the grids. Chapter 3 provides the details on 

the relative body motion calculations and is a companion chapter with chapter 4, discussing 

the 6DOF model. Chapter 5 provides the details for the computational mi jiödology. Given 

in chapters 6 and 7 is an overview of the visualization tools developed to animate the time- 

dependent unsteady simulation. Finally, chapter 8 discusses the movie and pertinent results 

produced from this research. 



CHAPTER n 

GRID GENERATION 

2.1    Introduction 

Unstructured grid technology is a promising approach offering geometric flexibility for 

handling of both complex geometry and physics. As such, it can provide a powerful 

capability for accurately and efficiently computing complex flow fields about realistic aerospace 

configurations. Several unstructured grid generation and flow solver procedures have been 

developed and successfully demonstrated for inviscid flow about complex configurations. For 

isotropic elements, existing procedures are robust and capable of generating high-quality grids 

efficiently. For anisotropic elements in viscous flow applications, further improvements in 

efficiency, robustness, and quality of unstructured grid generation procedures are needed. In this 

chapter, a grid generation procedure is presented which offers the potential for overall improved 

performance and quality. 

The most common approach used to generate anisotropic unstructured grids is to use a 

layered approach and generate points along normals from -,olid boundaries. Unstructured 

grid generation for viscous applications have been developed using a modified advancing-front 

method by Hassan, et al [5], a semi-structured approach by Lohner [6], advancing-normal by 

Marcum [7], and advancing-layers by Pirzadeh [8]. Hybrid methods for prismatic/tetrahedral 

grid generation have been developed by Kallinderis [9] and Sharov and Nakahasi [10]. While 

all of these methods differ in how points and elements are generated, they all produce very 

structured and aligned elements adjacent to solid boundaries and use isotropic tetrahedral 

elements outside of the anisotropic or boundary-layer region. Use of prismatic elements within 

the anisotropic region can reduce subsequent memory and CPU requirements for the flow solver 

without any loss of accuracy. 



The goal of the present work is to modify the existing advancing-normal and advancing- 

front local-reconnection method [7] for efficient generation of high-quality, mixed element type 

Figure 2.1: Trapped sliver element between prismatic groups of tetrahedral elements. 

unstructured grids for viscous flow applications. While this method has many advantages, the 

local-reconnection process is unable to remove trapped sliver elements. Such elements can be 

formed between prismatic groups of elements as shown in Figure 2.1. Local-reconnection or 

connectivity optimization can not remove these trapped slivers as they represent a local minimum 

state that cannot be removed without reconnecting a potentially very large number of elements. 

An alternative is to use the same point placement strategy and discard the connectivity in favor 

of a hybrid approach. With a hybrid approach the element connectivity is directly implied. Also, 

the elements can be recovered as either all tetrahedra or a mixture of five and six node pentahedra 

and tetrahedra. This combined approach retains most of the generality of the original and is very 

efficient. 
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2.2   Unstructured Grid Generation Procedure 

The approach used in the present work uses the advancing-normal point placement 

algorithm [7] to generate points within the anisotropic region. The advancing-front/ local- 

reconnection (AFLR) procedure [11],[12] is used to generate tetrahedral elements in the isotropic 

legion. The basic steps in the overall procedure are listed below. 

1. Generate a boundary surface grid. 

2. Generate a volume triangulation of the boundary points. No boundary recover)' is required. 

3. Create new points using advancing-normal point placement. 

4. Attach new points to the existing triangulation for searching and checking. 

5. Create a new boundary surface grid using the inflated surface from advancing-normal point 
placement. 

6. Use AFLR to generate an isotropic tetrahedral element grid for the remaining regions. 

7. Merge anisotropic and isotropic regions.   Element connectivity within the anisotropic 
region is directly determined from the point ordering. 

2.2.1 Advancing-Normal Anisotropic Grid Generation 

With advancing-normal type point placement for high-aspect-ratio elements, the standard 

AIT.R procedure [7] does produce sliver elements of the type shown in Figure 2.1. These 

elements are generated only in regions of high-aspect-ratio elements with a very structured 

alignment. Elimination of these elements with local-reconnection is not feasible. There may 

be no nearby optimization path which produces a better connectivity. The problem is inherently 

due to the very structured nature of the grid in these regions. Only a limited set of possible 

triangulations, that do not contain sliver elements, exists for a set of tetrahedra aligned in 

prismatic groups. A modified process is proposed here which eliminates the sliver problem and 

retains the generality and efficiency of the original procedure. In the present approach, local- 

reconnection is not used to determine the connectivity in these regions, Instead, the connectivity 

is directly determined by the order in which points were generated.   This produces a very 
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structured connectivity and allows the elements created to either be all tetrahedra or of mixed 

type. 

The basic steps in the modified procedure are listed below. 

1. Df irmine a normal vector at each active boundary-layer point. Initially the normals are 
based solely on the original boundary surface geometry. As the generation advances the 
normals are generated using the geometry of the outer layer of the boundary-layer grid. 

2. Smooth the normal vectors with a weighting dependent upon the distance from the 
boundary. Initially the normals are unsmoothed. At the estimated end of the boundary- 
layer region full smoothing is applied. The end of the boundary-layer region is based on a 
estimate of where the element aspect ratio will be near isotropic. 

3. Generate new points one layer at a time. New points are created along the normal vector 
with the normal spacing determined using geometric growth from the boundary surface. 
Generation of new points along a normal is shown in Figure 2.2 

4. Check distance between new points and surrounding element quality. The volume 
triangulation is used to efficiently check nearby points. As boundary-layers merge new 
points may be too close and advancement should terminate locally. A new point is rejected 
if the distance between it and any nearby new (or existing) point is less than a preset 
fraction of the local element length scale. Boundary-layer advancement is terminated 
locally if a new point is rejected. 

5. New points are also rejected if any of the surrounding elements that they may produce fail 
a quality check (maximum angle < 160 deg.). Boundary-layer advancement is terminated 
locally if a new point is rejected for quality. 

6. Am[ve points can become isolated as boundary-layer advancement is locally terminated. 
This can be prevented by rejecting a new point and terminating local advancement if more 
than some fraction of its neighbors have been terminated. 

7. Check element aspect-ratio. As the grid advances and the normal spacing increases 
the element aspect-ratio will eventually be isotropic. Boundary-layer advancement is 
terminated locally when the aspect-ratio on the next layer would be greater than unity. 

8. Attach accepted new points to the volume triangulation. New points are connected and 
attached to the existing element that contains them. 

9. Generate a new boundary surface grid by inflating the previous surface at points that have 
continued to advance. 

10. Repeat steps 1 through 9 until no new points are accepted. 



Figure 2.2: Advancing-normal point placement along normal line from boundary surface. 

2.2.2    Normal Spacing 

The normal spacing is determined using accelerated geometric growth. The initial normal 

spacing can be specifier globally or at each boundary point. Standard geometric growth is used 

with an accelerated growth factor. The normal spacing is determined from 

Asn+i = Of„As„ (2.1) 

an+i = min(ßan,ar (2.2) 

where Asn is the normal spacing for layer n, an is the growth factor for layer n, amax is the 

maximum allowable growth factor, and ß is the growth acceleration factor. 
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2.2.3 Boundary Normal Vectors 

A boundary normal vector is required for the advancing-normal procedure. This normal is 

determined on the inflated surface during each pass. On the first pass the surface is the same as 

the original boundary surface. As only the boundary face normals are unique (since planar faces 

are used), some form or averaging or optimization procedure must be used to obtain tne normal 

vector at nodes. Weighted averages can produce variations in normals due purely to topology or 

local face area differences. In the present work, a least-squares optimization procedure is used 

to eliminate those variations. An error function is defined as 

ej = I - b{ • rij (2.3) 

where e} is the error function for face j, iij is the face unit normal vector for face j, b, is 

the node unit normal vector for node i. Node and face normals are shown in Figure 2.3. The 

error function is also directly related to the volume of the element that will be produced from 

a given face. Minimizing the error function also maximizes the element volume. Least-squares 

optimization can be used to find 6, such that J2 e) IS minimized. The resulting equations are 

EKfc •»>*] = !>* (2-4) 

D(fc •«>?] = !>? (2-5) 

£[ft •B>i] = Eni (2-6) 

where £ denotes the sum over all faces surrounding node i and n*, ny-, and nz- are the x, y, and 

z components of the unit normal vector for face j. 

2.2.4   Element Connectivity 

The element connectivity for the points created using advancing-normal point placement 

is determined directly from the order in which they were created.  The initial point ordering 
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Figure 2.3: Node normals determined from surrounding face normals. 

is re-ordered so that optimal element quality will be produced (concave first and convex last). 

Tetrahedral elements are created (only temporarily if mixed elements are desired) for a given new 

point by inflating all surrounding boundary faces a^ shown in Figure 2.4. Pentahedral elements 

can also be created using points generated on subsequent layers. Five and six node pentahedra 

are formed by combining tetrahedra as shown in Figure 2.5. With mixed element types, five- 

node pentahedra and tetrahedra are created only on the outer layer of the anisotropic region as 

shown in Figure 2.6. These elements are required so that the anisotropic region is bounded only 

by triangular faces. All of the elements in the combined grid have strict node, edge, and face 

matching to each other and to neighboring tetrahedral elements. 

2.2.5    Isotropie Grid Generation 

The AFLR grid generation procedure used in the present work is a combination of automatic 

point creation, advancing type ideal point placement, and connectivity optimization schemes. A 
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Figure 2.4: Creation of tetrahedral elements using advancing-normal point placement. 

valid grid is maintained throughout the grid generation process. This provides a framework for 

implementing efficient local search operations using a simple data structure. It also provides a 

means for smoothly distributing the desired point spacing .n the field using a point distribution 

function. This function is propagated through the field by interpolation from the boundary 

point spacing or by specified growth normal to the boundaries. Points are generated using 

advancing-front type point placement. The connectivity for new points is initially obtained by 

direct subdivision of the elements that contain them. Connectivity is then optimized by local- 

reconnection with a combined Delaunay and min-max (minimize the maximum angle) type 

criterion. The overall procedure is applied repetitively until a complete field grid is obtained. 

Complete details are presented in [11], [12]. 
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Figure 2.5: Pentahedral elements formed by combining tetrahedral elements. 

2.3    Application Examples 

Selected application examples are presented here to demonstrate the capabilities of the 

present procedure for generation of three-dimensional unstructured grids of rr _xed element types 

that are suitable for Reynolds-Averaged Navier-Stokes simulations. All geometry preparation 

and surface grid generation work was done using SolidMesh [13] with AFLR surface grid 

generation [12]. 

Grid quality distributions and statistics are presented for all examples in Figure 2.7. Element 

angle is used as the grid quality measure. The complete set of grid quality data consists of 

the six, eight, and nine dihedral angles for all tetrahedra, five-node pentahedra, and six-node 

pentahedra respectively. In Figure 2.7. the distribution plot is in 5 deg. increments. As 

shown, the distribution has peaks at 60 and 90 deg. from the six-node pentahedra and a peak 

near 70 deg. from the tetrahedra. The results for the examples presented are representative of 
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Figure 2.6: Use of pyramid and tetrahedral elements to transition between prismatic and 
tetrahedral regions. 

those obtained for a variety of configurations. Typically, for isotropic elements in the grid, the 

maximum element angle is 160 '>g. or less, the standard deviation is 17 deg. or less, and 99.5% 

or more of the element angles are between 30 and 120 deg. And, for anisotropic elements in 

the grid, the maximum element angle is 170 deg. or less and 99.5% or more of the element 

angles are between 30 and 135 deg. The minimum angle is usually dictated by the geometry. 

Convex or concave edges with an included angle less than 20 deg., such as a sharp trailing edge 

or the interior of a wedge, can produce larger maximum angles in the anisotropic region. The 

maximum anisotropic element angle can be controlled by specifying the maximum allowable 

angle (which eliminates generation of such elements) or by use of multiple normals at convex 

edges3. 

CPU time required on a SUN Ultra 60 workstation is presented in Table 2.1 for each example. 

Computer routines for the three-dimensional grid generator are written in C with dynamic 
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memory that is automatically reallocated based upon actual requirements. All floating-point 

calculations are performed using 64 bit precision with 8 byte data. The CPU times reported are 

for one processor and include all I/O and generation of grid quality data. A boundary surface grid 

file is the input. The output includes a grid coordinate and connectivity file and a quality data 

file. Memory required is about 300 bytes per node generated. Requirements for memory and 

CPU time vary with the percentage of anisotropic elements, as those requirements for anisotropic 

generation are considerably less than those for isotropic generation. 

User input required to generate a complete grid is minimal and includes specifying the point 

spacing at selected control points on the boundary curves for surface grid generation. Selection 

of options such as which boundaries to generate anisotropic elements from and initial normal 

spacing are the only required user input for volume grid generation. There are no user adjustable 

parameters that need to be changed from case to case. In all cases presented here, the initial 

normal spacing was set suitable for high Reynolds number viscous CFD analysis. Initial normal 

spacing was determined such that the first node adjacent to a viscous surface would have a y+ 

value near 1. 

Table 2.1: Number of nodes and elements generated and CPU time required for example cases. 

Case Boundary 
Faces 

Nodes Five-node 
Pentahedra 

Six-node 
Pentahedra 

Tetrahedra CPU Tim* 
(min) 

EET Wing 
Body 272,920 2,290,661 33,001 3,744,105 2,004,663 41.9 
Space Shuttle 
Orbiter 152,810 1,102,869 10,269 1,709,948 1,181,232 16.6 

Titan IV-A 
Exterior 337,596 2,980,493 25,370 5,113,326 1,962,705 59.4 

Titan IV-A 
Interior 88,502 571,399 31,548 861,492 642,859 5.9 
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2.3.1 Energy Efficient Transport (EET) 

A grid suitable for high Reynolds number viscous CFD analysis was generated for a high- 

lift wing/body configuration of the Energy Efficient Transport (EET). The surface grid on the 

underside of the wing is shown in Figure 2.8. Field cuts near the wing/body, wing/slat, and 

wing/flap regions are shown in Figure 2.9. Element size varies smoothly in the field and there 

is a smooth transition between the anisotropic and isotropic regions. In narrow regions between 

components, the number of anisotropic layers is reduced to produce high-quality elements 

between them. Also, the symmetry plane grid has been re-generated to match the interior 

anisotropic elements exactly. Grid quality distributions are shown in Figure 2.7. Number of 

boundary faces, nodes, elements and CPU time are presented in Table 2.1. An all tetrahedral 

element version of this grid was used by Sheng, et al [14] for incompressible flow simulation 

with an implicit multi-block flow solver. 

2.3.2 NASA Space Shuttle Orbiter 

A grid suitable for high Reynolds number viscous CFD analysis was generated for the NASA 

Space Shuttle Orbiter. The surface grid is shown in Figure 2.10. Field cuts near the rocket 

motor and inboard flap regions are shown in Figure 2.11. Element size varies smoothly in the 

field a"J there is a smooth transition between the anisotropic and isotropic regions In narrow 

regions between components, the number of anisotropic layers is reduced to produce high- 

quality elements between them. Also, the symmetry plane grid has been re-generated to match 

the interior anisotropic elements exactly. Grid quality distributions are shown in Figure 2.7. 

Number of boundary faces, nodes, elements and CPU time are presented in Table 2.1. 

2.3.3    Titan rV-A Launch Vehicle 

A grid suitable for high Reynolds number viscous CFD analysis was generated for a Titan 

rV-A launch vehicle wind tunnel test model configuration.   This configuration includes two 

strap-on solid rocket motors (SRM), thrust vector control (TVC), stage separation motor (SSM), 

interstage cavity, and wind tunnel test model sting. The overall configuration and surface grid 



16 

near the SRM, TVC and SSM regions are shown in Figure 2.12. Field cuts near the SRM, TVC, 

and SSM regions are shown in Figure 2.13. A field cut within the interstage cavity is shown in 

Figure 2.14. Element size varies smoothly in the field and there is a smooth transition between 

the anisotropic and isotropic regions. In narrow regions between components, the number of 

anisotropic layers is reduced to produce high-quality elements between them. Grid quality 

distributions are shown in Figure 2.7. Number of boundary faces, nodes, elements and CPU time 

are presented in Table 2.1. This configuration, and the others presented here, are representative of 

the high level of geometric complexity that can be handled routinely using the present approach. 

2.4   Summary 

A procedure has been presented for efficient generation of high-quality unstructured grids of 

mixed element types suitable for CFD simulation of high Reynolds number viscous flow fields. 

Layers of anisotropic elements are generated by advancing along prescribed normals from solid 

boundaries. The points are generated such that either pentahedral or tetrahedral elements with an 

implied connectivity can be be directly recovered. As points are generated they are temporarily 

attached to a volume triangulation of the boundary points. This triangulation allows efficient 

local search algorithms to be used when checking merging layers. The existing AFLR procedure 

is used to generate isotropic elements outside of the anisotropic region. Results were presented 

for a variety of applications. The results demonstrate that high-quality anisotropic unstructured 

grids can be efficiently and consistently generated for complex configurations. 
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Figure 2.7: Volume element angle distributions. 



18 

Figure 2.8: EET wing surface grid. 
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Figure 2.9: Field cuts for EET grid. 
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Figure 2.10: NASA space shuttle orbiter surface grid. 

a. rocket motor region b. inboard flap region 

Figure 2.11: Field cuts for NASA space shuttle orbiter grid. 
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Figure 2.12: Titan F/-A launch vehicle surface and grid. 



a. SRM end region 

b. TVC end region 

c. SSM region 

Figure 2.13: Field cuts for Titan IV-A launch vehicle external grid. 



Figure 2.14: Field cut and surface grid for Titan IV-A interstage cavity. 



CHAPTER UI 

RELATIVE BODY MOTION 

3.1    Introduction 

Unsteady simulations for moving geometries typically require a body conforming grid at all 

times. If the bodies in the flow field undergo arbitrary movement, a fixed grid will lead to 

badly distorted elements which will result in convergence difficulties and poor quality results. 

Remeshing must be carried out in order to have a body conforming grid. One option is to 

do a global regeneration which is an expensive process and can degrade the accuracy due to 

accumulation of interpolation errors. 

Unsteady flows with moving bodies are often handled using adaptive remeshing [15, 16] of 

regions undergoing rapid changes. It has been observed that frequent adaptations may lead to 

poor numerical results and also can result in loss of essential physical features of the flow [17]. 

The poor performance is due to the interpolation of data from one grid to another. In order 

to overcome this loss of information and to increase the efficiency, local remeshing [17] can 

be carried out in the vicinity of highly distorted elements. A typical simulation may require 

several regenerations. In order to carry out realistic computations, a fast remeshing capability is 

required. 

Identification of the region of grid deformation is an important task in the dynamic grid 

generation procedure. One approach is the adaptive window procedure presented by Singh 

et al [18]. Windows are created by specifying a normal distance from the body of interest. 

The entire domain is searched to locate the points that fall within the window and are flagged 

as window points, which is quite expensive. The window points are considered as a spring 

network and are allowed to adapt to the body movement. Tension spring analogy is a popular 

technique that has been used to solve moving body problems [18], [19] and has been proven 
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successful for problems with small scale deformation [19]. For large deformation, the spring 

stiffness is critical and crossing of grid lines may be encountered since the connectivity has to 

be maintained at all times. Finite element methods have also been used to solve the moving 

body problems [17, 20]. An arbitrary Lagrangian-Eulerian(ALE) formulation has been used for 

solving tiansient problems with large scale deformations [20] in which the coordinates can move 

in an arbitrary way. 

Most of the previously described methods were tested on inviscid grids. Many practical 

situations involve solution of viscous flows, which requires a high aspect ratio grid close to the 

body. In this case, the problem becomes more severe since the deformation of the high aspect 

ratio elements will result in a poor quality grid with slight movement of the bodies. Hence, we 

need a general method that can handle both viscous and inviscid grids with arbitrary motions. 

Another real challenge for the dynamic mesh algorithm is in its ability to handle the relative 

motion of the bodies in close proximity. In this case, badly distorted elements are encountered 

with minimal deformation. Frequent remeshing is required to maintain grid quality. 

In the present study a general dynamic unstructured grid algorithm is presented, which can 

handle arbitrary motion. An efficient procedure for the identification of the window region is 

developed. The problem of handling the relative motion of bodies in close proximity has been 

addressee bv developing a local marching procedure. Results are presented fix mixed element 

type grids to demonstrate the efficiency of the present algorithm. Topological changes are not 

considered in the present research. 

3.2   Grid Generation 

Grid generation for a given geometry is carried out using the Advancing-Front/Local- 

Reconnection(AFLR) [21, 12, 22] method. The AFLR procedure uses a combination of 

automatic point creation and advancing type ideal point placement. A point distribution function 

is assigned to each boundary point based on the local spacing. The growth rate normal 

to boundary is also specified for each boundary point. The point distribution function is 

propagated through the field by interpolation. Points are generated using advancing-front type 
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point placement for isotropic elements [21], and advancing-normal type point placement for 

high-aspect ratio elements [22]. Initial connectivity is obtained using direct subdivision. A 

valid grid is maintained throughout the grid generation process. The grid connectivity is then 

optimized using iterative local-reconnection process subject to a quality criterion. A combined 

Delaunay/min-max type criterion is used. The overall procedure is repeated until the entire field 

grid is generated with desired point spacings. 

For complex geometries a mixed element type grid is generated with pseudo-structured elements 

in the regions where the geometry is smooth. To improve the efficiency of the flow solver 

unstructured tetrahedral elements are used elsewhere. The advancing normal type point 

placement used for the generation of the high-aspect ratio elements inside the boundary layer 

leads to structured type elements. The elements inside the boundary layer are combined to form 

mixed(pentahedral and tetrahedral) elements [22]. 

The dynamic grid generation process can involve a number of regenerations. Therefore, an 

efficient grid generation procedure is extremely important for a moving body simulation. The 

AFLR procedure has a demonstrated ability to generate high quality grids about geometrically 

complex configurations for a variety of applications [12, 22]. Also this procedure is highly 

efficient and robust, thus providing a direct contribution to the efficiency of the overall dynamic 

grid generation algorithm. 

3.3    Window(Deforming Region) Identification 

Identification of windows corresponding to the moving bodies plays a significant role in the 

dynamic grid generation process. The ability of the procedure to identify this region, has an 

immediate consequence in the overall efficiency, since the windows will have to be recreated 

many times during the simulation. The first step in the present dynamic grid generation algorithm 

is to form the protected layers corresponding to all the stationary surfaces in a given grid. This 

is done in order to avoid the intersection of body surfaces and to preserve the boundary layer 

of the stationary bodies. Rigid layers are formed corresponding to each moving body, that are 

allowed to move with the body. If a moving body has a viscous boundary condition then the 



entire boundary layer is allowed to move with the body in a rigid fashion. This prevents the 

distortion of the high aspect ratio boundary layer elements and preserves a high quality grid. 

Windows are identified outside the rigid layers and the nodes that fall inside this window region 

are allowed to adapt to the body movement. 

3.3.1 Marching Procedure 

The protected layers, rigid layers and windows are formed by using a marching procedure. The 

list of elements surrounding a node is built using the grid connectivity information. The nodes 

that appear on the moving body surface are tagged as surface nodes. Marching is carried out 

from the surface using the list of elements surrounding a node. The nodes of elements that do 

not belong to the current layer are tagged as nodes corresponding to the next layer. Marching 

is continued until a specified number of layers are identified. This procedure is highly efficient, 

since marching is carried out locally from only those nodes that are tagged as belonging to the 

surface of interest. In the case of mixed element type grids the window region contains only the 

tetrahedral elements as all the mixed elements occur inside the boundary layer. The end of the 

rigid layer and that of the window region define the boundaries of the deforming region. These 

boundaries form a valid surface grid used when the deforming region undergoes regeneration 

bp'^ed on the quality criterion. The outer boundary of the window forms the interface between 

the deforming and non-deforming regions. 

3.3.2 Local Marching 

Modeling of practical geometries often includes bodies in close proximity with narrow gaps 

e.g. launch vehicle geometries with strap-on boosters. The number of layers generated between 

the bodies that are very close is hence restricted by the size of the gap. Uniform marching in such 

gaps will result in either the intersection of the boundary layer or the surface of the neighboring 

body. Therefore a local marching procedure has been developed. Marching is stopped locally 

on any region if a node comes in contact with the nodes that are already marked. This allows the 

layers to grow only in those regions where elements are available for marching. Intersection of 
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the window regions is another problem that is encountered when moving bodies are close to each 

other. This problem is treated by identifying a common window for all bodies whose windows 

intersect. The common window is used until the bodies move sufficiently far to establish their 

independent windows. 

3.4   Grid motion and Remeshing 

Grid motion has to be carried out in order to follow the moving boundary. The motion is 

implemented in two steps. The first step requires the rigid layers attached to the body to move 

with the body to which they are associated. This helps in keeping the grid undistorted close to 

the surface. Deformation is carried out in the grid region inside the window in such a way that 

element distortion is minimized. This is achieved by calculating weights associated with the 

nodes. All the nodes corresponding to moving surfaces and the rigid layers have a weight of one 

and the nodes in the non-deforming region and the nodes corresponding to all other stationary 

surfaces will have a weight of zero. The weights of the nodes inside the window region varies 

smoothly from one to zero as shown in Figure 1. 

After each deformation the grid quality of the window region is checked by calculating the 

dihedral element angle. A low quality element will have an angle close to 180 degrees. Elements 

with an angle of 170 degrees are typically acceptable. In cases when the bodies are in close 

proximity, the maximum angle of the undeformed window region is used for the quality criterion. 

In addition to the angle criterion, the element volume is checked. If a given element has a 

volume which differs from its original volume by more than a factor of three then the quality 

criterion is not considered satisfied. A volume ratio of three is considered acceptable during the 

deformations. 

If the quality criterion are not satisfied, a local regeneration of the window region is carried out. 

Surface reconnection is not allowed during this regeneration process since that would effect the 

connectivity of the non-deforming portion of the grid. The regenerated grid is then put back to 

form a new grid. The new grid is checked to make sure that there are no zero volume elements. 
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Deformation is continued after recomputing the weights and windows. When two bodies are 

in close proximity, this procedure could result in elements with zero volume on the interface 

between the rigid layers and the regenerated grid. This occurs due to the restriction placed 

on the surface grid that no reconnection is allowed. Under such conditions a second level of 

regeneration is carried out by remeshing the grid from the body surface to the end of the v. iudow 

region. If the moving body has a viscous boundary condition, the boundary layer is regenerated. 

The overall grid quality is maintained. In some cases, it may also be possible to eliminate the 

zero volume elements by reconnecting the elements in the fixed region. Results presented in the 

next section shows the efficiency of the present algorithm, which is mainly due to the fact that 

the regenerations are localized. 

3.5    Results 

To validate the present dynamic grid generation algorithm a launch vehicle test case with three 

boosters is considered This configuration consists of bodies in close proximity which poses a 

real challenge for the dynamic grid generation process. Details of the grid generation of this 

geometry can be found in Ref [12]. A viscous grid is generated for the given configuration 

using the AFLR technique with mixed element types inside the boundary layer. The initial grid 

consists of 390,332 nodes with 628,827 tetrahedron, 4/39 five-node pentahedron(pyrarhid<0 and 

541,903 six-node pentahedron(prisms). Rigid layer and window region statistics corresponding 

to the moving booster are shown in Table 1. The CPU time reported is the time to generate the 

initial maps for the rigid and window regions. 

Table 3.1: Rigid layer and window region statistics 

No. of 
layers % nodes % tets % pyramids % prisms 

CPU 
(sec) 

Rigid 
layers 17 12.022 0.136 20.20 15.922 2.41 
Window 
region 5 

10 
1.876 
4.739 

10.449 
22.327 

0 
0 

0 
0 

2.05 
3.62 
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The computations are carried out on one processor of a Sun HPC 10000. In order to bring out 

the effect of the number of layers in the window region on the quality of the deformed grid and 

the efficiency of the algorithm, a detailed study is carried out by considering both five and ten 

layers in the window region. The distribution of the weights in the window region for the initial 

grid with five and ten layers is shown in Figures la and lb and the final position in Figures lc 

and Id. It can be seen from the figures that the small gap between the main body and booster 

restricts the growth of the window region and therefore a local marching procedure is used for 

the window identification. 

The dynamic grid generation is carried out by allowing one of the boosters to follow a 

translational motion. A AX of 0.025 is used for the deformation. The overall length of the 

moving strap-on booster is 47.6. 500 deformation steps are carried out. It is observed that, 

with the increase in distance between the main body and the booster, there is an increase in the 

number of elements and nodes in the window region. After the booster has moved far enough to 

establish a fully developed window region, a decrease in the number of elements and nodes in 

the window region is noted. The number of elements in the window region ranged from 65646 

to 82728 in the five layer case. Local regeneration of the window region is carried out when the 

the quality criterion is violated. The details of the simulation are presented in Table 2. The total 

CPU time listed is for all grid work during the r'mulation, including grid motion, remeshing, 

regeneration of layer maps and calculation of weights. 

Table 3.2: Remeshing data for strap-on booster separation simulation 
No. of 
layers 

No. of 
steps 

Total CPU 
(sec) 

AFLR 
CPU 

Other 
CPU 

No. oflocal(AFLR) 
remeshing(level 1) 

5 500 3268.65 281.58 2987.07 27 
10 500 2645.9 230.79 2415.11 7 

Other than the AFLR code for mesh generation, the present code is not optimized. With a fully 

optimized code, a good improvement in the efficiency of the algorithm is anticipated. Presently, 

several of the required maps are generated globally rather than locally for convenience. Field 
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cuts of the deformed grid with five and ten layers in the window region are shown in Figures 2 

and 3. Figure 2 shows that the moving booster leaves a trail near the tip as it moves. With ten 

layers in the window region the trail is cleared and it can be seen from Figure 3 that the deformed 

grid is of good quality. Figure 4 shows the field cut of the final grid with two moving boosters 

and five layers in the window region. 

The results of the present study show that an increase in the number of layers in the window 

region results in a reduction in the number of local regenerations, and a corresponding increase 

in efficiency. Accuracy of the overall flow simulation algorithm should also increase due to 

reduced interpolation errors. 

3.6    Conclusions 

A general dynamic grid algorithm capable of handling arbitrary relative motion of multiple 

bodies is presented. A robust procedure for identifying the windows is developed and the 

treatment of bodies in close proximity is addressed by using a local marching procedure. 



Figure 3.1: Window region a. 5 layers initial, b. 10 layers initial, c. 5 layers final, d. 10 layers 
final 
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Figure 3.2: Field cut after 500 steps, with 5 layers in window region 

Figure 3.3: Field cut after 500 steps, with 10 layers in window region 
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CHAPTER IV 

SIX DEGREE OF FREEDOM (6DOF) MODEL 

Prediction of the trajectory of the moving body requires the coupling of the fluid dynamic 

equations and the solid body equations. The application of Newton's second law to moving 

bodies results in the six-degree-of-freedom(6DOF) equations. Details of the derivation of the 

equations can be found in Stevens et al [23]. Also, a detailed discussion of the equations of rigid 

body motion can be found in [24]. 

Two sets of coordinate systems are used in this model. The body fixed system is rigidly 

attached to the moving body with the Center of Gravity(CG) as its origin. There is an inertial 

coordinate system to which the position and orientation of the body is referenced. B(t) is the 

rotation matrix that takes vectors from the inertial to the body coordinate system. 

The state variables of the model consists of three components of each position vector 

p = (i, y, z)T, the translational velocity coordinates VB = («, u, w)T and the angular velocity 

coordinates UB = (P,Q,R)T. A differential equation is needed for time-varying transformation 

matrix B, which will lead to four additional equations for the attitude in terms uf the quaternions 

q = (90,91,92,93)r- 

One set of state equations is obtained by writing p in terms of its components 

p = BTVB +OJE X p 

or 

p = B1vB + SlEp (4-1) 

35 
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where QE is the absolute angular velocity of Earth's rotation. The symbol Q. is used to denote 

the cross-product matrix corresponding to the operation (wx). 

Newton's second law, applied to the translational motion, relates force to rate of change of 

linear momentum which is given by 

FB + Bmg = m—[vB + B{uE x p)] (4.2) 
at i 

where Fg is the force in the body coordinate system, Bmg is the gravity force rotated into body 

frame by rotation matrix B, and ^- (mtTg) is the time rate of change of linear momentum of the 

body with respect to the inertial coordinate system. Expansion of this last term results in 

— [TTIVB + B{uE x p)] = {vB +UßX vB) + B{uE x p) (4.3) 
at] 

Rearranging the Eq.(4.2), using Eqs.(4.1,4.3) the state equation for the translational velocity 

becomes 

FR 
vB = (wB + BuE) xvB + B[g- uE x (uE x p)\ (4.4) 

m 

The angular accelerations are obtained by applying Newton's second law to the rate of change 

of angular momentum of the body. The angular equation of motion is given by 

TB = -^(HB) (4.5) 

TB is the net torque acting about the body CG, HB is the angular momentum of the rigid body 

and the time derivative is with respect to the inertial coordinate system. Expansion of the time 

derivative term results in 

■^-(HB) = äB + i3BxHB (4.6) 

The angular momentum is given by 
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HB = JUB (4.7) 

where J is the matrix ' f moment of inertia 

J = 

Jx -J. xy 

Jxy       Jyy 

"Jx 

"xz "yz        "zz 

The entries of the inertia matrix are computed as follows 

Moment of inertia about the x-axis is given by 

j T J(y2 + z2)dm (4.8) 

Cross-product of inertia is given by 

Jxy   —   Jyx = JXydm (4.9) 

The state equation for the rotational motion is given by 

ÜB = -J-^UB X {JuB))+J~lfB (4.10) 

A four-variable attitude propagation in terms of the quaternions is considered in the present 

work to determine the orientation of the body. The three-variable attitude propagation in terms 

of Euler angles has some disadvantages. When the pitch angle 0 reaches ±90 degrees, a division 

by zero is encountered. Also, Euler angles may integrate up to values outside the the normal 

range of the pitch, roll and yaw angles [23]. Therefore it is difficult to determine the attitude 
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uniquely. Four-variable attitude propagation overcomes this problem. The differential equation 

for the quaternion parameters is given by 

h 
2* 9 = -;A$ ^4.11) 

4.1    The Round-Earth Equations 

For a complete state model the relevant state equations are assembled in a matrix form 

(Ref. [23]) as follows 

P 

VB 

UB 

q 

nE B1 0 0 

Bn2
E -{ÜB + BQE) 0 0 

0 0 -J-iQuJ 0 

0 0 0 2 "9 

p 

V 

u 
+ 

0 

Bg+ £* 

J-'TB 

0 
(4.12) 

The state vector XT =  jF, Vß,üg, q1'} contains 13 elements and it completely determines 

the position of the body at any given instant. 

The coefficient matrix consists of submatrices 

0    0       0 

nE o   o 

0   OJX 0 

Q B 

0     -R    Q 

R      0     -P 

-Q     P      0 

Sin 
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0      P      Q      R 

-P     0     -R    Q 

-Q     R      0     -P 

-R   -Q     P      0 

ll + Qi ~ ?2 _ ?3      2(9,02 + 9093) 2(o1o3-o0o2) 

B=        2{q1q2-q0q3)      Qo ~ Qi + ll ~ Q3      2(g2o3 + g00i) 

2(oig3 + 00^2) 2(g2ca - ?o?i)      9o ~ ?i ~ «I + 9a 

The rotation matrix B is orthogonal. Hence B~l = BT. The forces and moments on the 

right hand side are functions of VB and UB- The Eq.4.12 is nonlinear since the coefficient matrix 

B, fiß and Q.q are functions of the state variables. The system of equations is numerically 

integrated in time using a four stage Runge-Kutta method. Earth's rotation rate is not considered 

in the present work. 

4.2   Results 

In order to validate the present code a test case with no forces is considered since an exact 

solution can be obtained by integrating the state equations. When there are no forces acting on 

the body, the rotational equation(Ref. [25]) reuuces to 

AÜ\ = (B - C)u>20J3 (4.13) 

Bd>2 = (C - A)UJ3U>1 (4.14) 

Cu>3 = (A - B)üJiU>2 

where A,B,C are the principal moments. 

(4.15) 
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Figure 4.1: Comparison of the exact and computed solution for u\ 

Consider the case when two principal moments of inertia are equal A=B; then, w3 = 0 or 

w3 = h, a constant. The initial conditions at t=0 are u\ = a, u2 = 0 and u3 = c = h. The exact 

solution (Ref. [25]) is obtained by integrating the Eq.(4.13,4.14) and is given by 

ui = acos(Xt) 

u>2 = sin(Xt) 

u>3 = constant = h 

(4.16) 

(4.17) 

(4.18) 

where A = o.e. 

800 time steps are used to reach the final time t=40. It can be seen from Figures 1 and 2 that 

there there is a good agreement between the exact and computed solutions. 
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CHAPTER V 

COMPUTATIONAL METHODOLOGY 

This chapter is intended to outline each of the techniques used to construct the present 

Navier-Stokes unstructured solution algorithm. 

5.1    Governing Equations 

The solution algorithm discussed in the present work is capable of handling both the Euler 

and Navier-Stokes equations. Thus, the equations given here are the full 3D Navier-Stokes 

equations, with the understanding that the the Euler equations do not contain the viscous terms. 

The unsteady three-dimensional compressible Reynolds-averaged Navier-Stokes equations are 

presented here in Cartesian coordinates and in conservative form. The nondimensionalized 

equations can be written in integral form as: 

%r[QdV+[   F-HdA=^[   G-fldA 
at JQ. Jan Re Jan 

F = 

pu 

pu (u -Vx)+p 

pv (u - Vx) 

pw (u - Vx) 

e(u- Vx) + pu. 

i + 

Re jan 

P ' 

pu 

Q-    pv 

pw 

e . 

pv 

PU   {V   -   Vy) 

PV  (V   -   Vy)   + P J + 

PW {V   -   Vy) 

e{V -Vy)+pvi 

(5.1) 

pw 

pu (w — Vz) 

pv(w - Vz) 

pw (w — Vz) + p 

.e(w — Vz) + pw. 
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G = 

7~zx 

. UTXX + VTyx + WTZX - q. 

where the shear stresses are given as 

i+ 

• xy 

'yy 

'*y 

UTxy + VTyy + WTzy - qy 

j+ 

.UTX: +VTy- + WT-- - q.. 

Txx =  (M + Vt) 
du     2(du     dv     dw 

dx     3 \dx     dy     dz 
(5.2) 

^yy = (A* + /*«) 
' 9r     2 f du     dv     dw 
~dy     3 V#z     dy      cb 

(5.3) 

Tzz = (ß + Ht) 
dw     2 (du     dv     du^ 

2Jz~ ~ 3 \dx~ + dy + !ht 
(5.4) 

. (du     dv\ 
^ + ^{d-y + d-X) (5.5) 

. .(du     dw\ 
(5.6) 

, (dv     dw\ 

and the heat flux is defined as 

(5.7) 

V 7-1 VPrPrJ 
(5.8) 

where T is the temperature, fi and //< are the laminar and turbulent viscosities and Pr and Prt 

are the laminar and turbulent Prandtl numbers respectively. The above equations are closed by 
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the equation of state for an ideal gas, i.e., 

e = — 
7 

p_ +1 (y + r2 + U!2) (5.9) 

where 7 is the ratio of specific heats and is taken to be 1.4. The above equations were 

nondimensionalized with respect to the freestream speed of sound (a^ freestream density (px) 

characteristic length scale (L), and the freestream viscosity (//«>). Thus, Re = Poo^'coi/W and 

Moo is the freestream Mach number. The nondimensional pressure is defined as p = {p*L-^ j. 

where p* is the local static pressure. Obviously, for laminar flow, ßt = 0. 

5.2    Spatial Discretization 

Before discretization takes place, a control volume must be defined. The approach used 

in the present work is to define a control volume surrounding each vertex; thus, the solution 

technique is referred to as a vertex-centered (or node-centered) scheme. 

All solution variables are stored associated with control volumes. To define specifically the 

control volume boundaries, the median dual is used; this dual construction consists of connecting 

the centroid of each incident element to the midpoint of each incident edge. The non overlapping 

volumes formed by this procedure are defined to be the control volumes over which flux balances 

are performed. The definition of the median dual in two dimensions in shown in Figure 5.1. 

Note that in three dimensions, element centroids are connected to face centroids as well as edge 

midpoints; this also forms a closed control volume around a vertex. 

The governing equations are discretized using a finite volume technique; thus, the surface 

integrals in Equation 5.1 are approximated by a quadrature over the surface of the control volume 

of interest. So, the numerical discretization of the spatial terms associated with the control 

volume surrounding vertex 0 results in 

% + &o = 0 (5.10) 
at 



45 

6 5 

Figure 5.1: Control volumes are defined as median duals surrounding each vertex. 

where the spatial residual 5ft contains all contributions from the discrete approximation to the 

inviscid and viscous terms 0t = &,■„„ + &„,«). Also, the quantity q is defined as q = Jn QdV. 

5.2.1    Inviscid Terms 

Now, the integral for the inviscid terms must be approximated by a discrete sum; quadrature 

points are chosen as the midpoint of each edge incident to the vertex. Doing this, the flux vector 

is replaced by a suitable approximation <S (termed the "numerical flux vector"), therefore arriving 

at 

&0,inv=    Yl    ^Oi'^oi (5.11) 
x'€Af(0) 

The numerical flux is calculated using the Roe scheme, which solves a one dimensional 

approximate Riemann problem given the two solution states on each side of the control volume 

face: 
i i . 

(5.12) * = \ (F(QL) + F(QR)) - \ä (QR, QL) (QR - QL) 

where Ä = RAR~l. The matrix R is a matrix constructed from the right eigenvectors of 

the flux Jacobian, and A is a matrix whose diagonal entries contain the absolute values of the 

eigenvalues of the flux Jacobian. All quantities with the" character denote that they are evaluated 

at an averaged solution state (between QL and QR); for this compressible flow system, this state 

is simply the arithmetic average of QL and QR. 
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5.2.2 Viscous Terms 

The viscous terms can be discretized by any of several methods; in general, either a finite 

element or a finite volume technique is employed. Development of the various techniques is 

given below; for now, it suffices to note that the viscous terms, since they are linear, reduce to 

simple linear combinations of surrounding vertices (assuming that a nearest-neighbor stencil is 

maintained): 

Ko,w. = ^-   E   CiiQi-Qo) (5.13) 
i€V(0) 

where C, is a matrix containing the coefficients that reflect the viscous behavior. The task of the 

finite element or finite volume method is to specify these coefficients, which depend on geometry 

only. 

5.2.2.1    Galerkin Finite Element Method 

First, the conservation statement is written in differential form: 

^L + V-F-   -^-V-G   =0 (5.14) 
dt Re 

viscous terms 

In this development, only the viscous terms are considered; so, the inviscid term will be 

neglected. Now, let t!.c linear operator V be defined as 

-"W^i-^-G CMS) 

The finite element method multiplies the operator equation by a basis function and integrates the 

result over the spatial domain. In this case, the basis function 4> is chosen to be a linear function 

in each element that is defined as unity at the vertex in question, and zero at each of the neighbor 

vertices. Letting T be the union of all elements that intersect vertex 0, 

f 4>V{Q)dQ = 0 (5.16) 
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Note that the integration is zero outside of the domain of influence of <p, because of the definition 

of the basis function above. The domain of influence of <j> is simply the union of all elements 

intersecting vertex 0. Now, the definition for V{Q) may be inserted, and simultaneously the 

integration is broken into pieces. Note that this operation is done without approximation: 

dQo 
dt 

fd>dQ-^-  V   I  <f>eV-GedQ = 0 (5.17) 
ee£(0) 

Note that Q is a volume averaged dependent variable vector, which is equivalent to using a 

lumped mass matrix (the definition is the same as that proposed in the finite volume method). 

Now, using the following product rule, 

V • (<f>f) = <?V • / + / • V<p (5.18) 

a substitution may be made to obtain the following: 

ff^-^E     L   V • (*eÖe)rffi + ^    £    /_   Ge ■ V^rffi = 0 (5.19) 
01   JT Ke ee£(0)Jr< ee£(0)JT' 

The second term in the above expression can be converted to a surface integral via the divergence 

theorem. Then, it is trivial to see that these boundary terms are identically zero, since the 

basis function <j> is zero on the boundary of the integration (the outer boundary of the union 

of elements). Using the fact that V</>e can be computed exactly if one uses linear elements (a 

simple application of Green's theorem on a given element proves this), 

V& = -—^ne (5.20) 
T^dim -t e 
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where ne is an outward pointing normal for the exposed face of element e. Equation 5.20 may 

be immediately substituted into Equation 5.19 to obtain 

Vo^-^r   E   G£.n£ = 0 (5.21) 
dt       ndimRee£o) 

Note that the integral has disappeared, since between Equation 5.19 and Equation 5.21 the 

constant terms Ge and ne are removed from the integral. Also, the integral of the basis function 

over the domain of integration T is equal to T/ {ndim + 1) = V as long as the control volume is 

defined using a median dual. 

The viscous flux vector Ge in turn depends on the solution gradients. So, a means must be 

provided to evaluate the solution gradient in a particular element, since this is the entity in which 

Ge is evaluated. For a simplical element, Green's theorem may be utilized: 

/   V^dQ= f    4>HedA (5.22) 

where ib is a generic solution variable. Using this expression for evaluating the gradient in an 

element, it is possible to complete the approximation for the viscous terms. 

5.2.2.2   Directional Derivative Method 

A primary disadvantage of the traditional finite element method is that geometric data is 

needed that is nonlocal to a particular edge, unless edge coefficients are stored a priori (and the 

nonlocal maps discarded). However, the storage of these edge coefficients is very expensive, 

since six coefficients per edge must be stored in a three dimensional discretization. Further, for 

a finite element method, different integration coefficients are needed depending on the element 

type in a multielement grid. For general element grids, it is expedient to use only edge-local 

information to compute the viscous fluxes; this allows the evaluation of the viscous fluxes 

associated with each face of the control volume without regard to the varying element types of 
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the mesh. An algorithm in which no element information is used outside of metric computations 

is termed a "grid transparent" algorithm [26]. 

To address this difficulty, one can use a finite volume technique with a direct approximation 

for the gradients at the quadrature points; one such method that uses this approach is termed the 

"directional derivative" technique [27], [28]. The overall approach is to combine data obtained 

from the solution gradients at the vertices (which may have already been computed for dependent 

variable extrapolation) and edge local data to approximate the gradients required in the viscous 

terms: 

VQ,-j = VQ,jinorm + VQ.J-to„ (5.23) 

Using a directional derivative along the edge to approximate the normal component of the 

gradient and the average of the nodal gradients (each edge is connected to nodes i - j) to 

approximate the tangential component of the gradient, 

(VQij-s)§aQj~Qis (5.24) 

(VQy ■t)f«W- (VQ • s) s (5.25) 

where s is a unit vector in the direction of the edge, £ is a unit vectr. r in a direction normal to the 

edge, VQ = \ (VQ, + VQj), and As = Xj - x,. Combining liquation 5.24 and Equation 5.25 

leads to the following formula for the edge gradient: 

VQ.j « VQ + Qj - Qt - VQ • As 
As 

|A«|3 
(5.26) 

Since the midpoint of the edge is the quadrature point for the current finite volume method, this 

approximation may be used directly to evaluate the full viscous flux vector associated with the 

control volume face. Typically, the weighted least squares method is used to evaluate the nodal 

gradients in the preceding formula. 
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Because of the use of vertex gradients, the stencil for this method is no longer a nearest- 

neighbor stencil. Since the data structures used for storing the sparse matrix cannot typically 

support stencils larger than nearest-neighbor, part of the residual linearization from the 

directional derivative method must be neglected on the left hand side. The left hand side terms 

can potentially include all contributions from nodes i, j, and other nodes m the local stencil, but 

not contributions from distance-two nodes. In the current approach, all possible contributions in 

the nearest-neighbor stencil are taken into account. 

5.2.3    Higher Order Accuracy 

A second order (in space) method for the inviscid terms is constructed by extrapolating the 

solution at the vertices to the faces of the surrounding control volume. Either Green's theorem 

or a least squares method is used to compute the gradients at the vertices for the extrapolation. 

With these gradients known, the variables at the interface are computed as 

Qij = Qo + VQo • r* (5.27) 

where f is defined as x/ - x0; the position Sf is the midpoint of the edge (the quadrature point 

for the control volume face). To compute the gradient via Green's theorem, the following simple 

formula is used: 

/   VQdV= (    QfidA (5.28) 
Jn0 Jdüo 

Assuming a linear distribution in each element and noting that the area of integration is made up 

of discrete pieces, 

V^o = ^   £   z(Qo + Qi) (5-29) 
V° <6V(0) 2 

This formula is equally applicable in two and three dimensions; of course, special consideration 

must be taken at the boundaries such that a constant gradient is recovered if a linear distribution 

is input. 
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5.3   Temporal Discretization 

After the spatial terms have been suitably discretized, the time derivative term appearing 

in Equation 5.10 must be approximated. A general difference expression is available for this 

purpose ([29], [30]), and is given as follows: 

Aq n
      hAt d ,A _, ,     Atd 

i + e2dt i^") + T=ri:(in) + T^^n~1 
i + e2dt i + 

(5.30) 

where Aqn — qn+1 - qn. A first order accurate in time Euler implicit scheme is given by the 

choices 6\ = 1, 62 = 0. Correspondingly, a second order time accurate Euler implicit scheme 

is given by 6\ = 1, 92 = 1/2. Since 6\ = 1 for both time discretizations used in this work, 

Equation 5.30 can be further simplified: 

*- = i£;i («"♦')+ i£:*"- (5.31) 

Using Equation 5.10 to replace the time derivative, 

Aq" - j^-Aq Ö2_A„«-1 
+02' 
At l + i 

-ft n + l (5.32) 

By the definition of q, one can write q ■- QV. Then, the following two identities can be formed: 

Aqn = (QV)n+1 - {QV)n = Vn+1AQn + Q"AVn (5.33) 

"—1        -xin—1 A /-in—1    i   /-inAvn-1 Aq"-1 = (QV)n - (QV)       = Vn-1AQ"~1+QnAV (5.34) 

Inserting the above two identities into Equation 5.32, one arrives at the following expression: 

4_V"-1A/TI-I Vn+1AQn - YJfcV^AQ 

At 
+ Qn 

AV" - ^AV 

At 

n-l 

+ 
l + ö2 

Mn+i = 0    (5.35) 
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Now, one must consider the Geometric Conservation Law (GCL). This statement relates the 

rate of change of a physical volume to the motion of the volume faces: 

^ = / V • VsdV = I   Va- kdA (5.36) 
dt     Ja Jan 

According to Thomas and Lombard [31] and later Janus [32], the solution of the volume 

conservation equation must be performed in exactly the same manner as the flow equations 

to ensure that GCL is satisfied. This procedure ensures that spurious source terms caused by 

volume changes are eliminated. Using the same time differencing expression (Equation 5.31) to 

approximate Equation 5.36, 

AV" ^— AV"-1 i 
— 1+*2 = -^TTÄ&L (5-37) 

At 1 + 02 

where $?£cL = DieA^(o) Kii+1 ' "of1- Note tnat tne left nand side of tne preceding equation 

is exactly the bracketed term in Equation 5.35. Replacing the bracketed term and rearranging 

slightly gives the final form of the discretization of the time derivative: 

(1 + 02)V"^A^-02V"-1AQ"-1 + Qn^+ci + ^+l = 0 (5 38) 

5.4   Time Evolution 

The final version of the time discretization of the governing equations (Equation 5.38) 

indicates that the spatial residual must be evaluated at time level n + 1. Obviously, the solution 

state at this time level is unknown; to solve this nonlinear equation, one must linearize about the 

known solution Qn. One technique for doing so is to use Newton's method; following Equation 

5.38, let 

QS+l  (Q"+l)  =   (l + ^)Vo"+1AOg-02Vo"-1AQr1   + QnRn+lcL + £n+l (5 39) 
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The quantity ö"+1 is the function that should be driven to zero by the Newton iteration. 

Expanding 9n+1 in a Taylor series from a known level n + l.m, 

^n+l,m+l    jv.n+l.m + 
dt 

n+l.m 
At + 0{At2 (5.40) 

Dropping the U{At2) error term, utilizing the chain rule, and replacing ^ with a first-order 

difference, 
£)CV   n+l,m 

AQn+hm (5.41) + 
dQ 

Since the LHS of the above equation is zero at Newton convergence, 

-y, 
C^n+l.m _  V>*0 AQn+l,m 

dQ 
(5.42) 

where AQn+1'm = Qn+1^m+1 _Q"+i-m. NOW, expanding the terms and performing the required 

differentiations of 9 results in the following expression for Newton's method: 

in+l ,/\n+l,m n-1 \/\n-l 

 — ryo^o.GCL"1"    2^       0. 
n + l,m      -n + 1 

At 
■ n 0i 

(i + fl2)Vo"+1/ dHZ n+l,m     i-n+1 

At + E — 
i€A/"(0) 

0i' 

öQc 

i€A/"(0) 

AQS+1,m + 

E 
«6^(0) 

ofr"+l>m     i?n+l 
^■"Oi        * 7toi   AÖ""1"1'"1 

3Q, 
(5.43) 

where AQo_1 - Qo ~ Qo~l • For notational convenience, both the inviscid and viscous terms 

are collapsed into a single flux function H. Note that the iteration can be started by using an 

initial guess of Qn+lfi = Qn. Also, performing only one iteration of Newton's method per time 

step (with 1st order time discretization and no GCL terms) is equivalent to a time linearization 

of the spatial terms only. However, writing the method in this framework is more general than a 

straightforward time linearization of the nonlinear terms. 
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It is clear that Equation 5.43 gives rise to an algebraic sparse matrix system. If the matrix 

system is written as Ax = b, the left side of the above equation represents b, AQ represents x, 

and the coefficients preceding AQ represent the sparse matrix A. Furthermore, the coefficients 

leading AQ0 make up the diagonal of A, and the coefficients leading AQ, are the off-diagonal 

elements of A. 

Various methods are available to solve this sparse system of equations; direct methods, 

however, are impractical due to an operation count of 0{Nb2
w), where bw is the half-bandwidth 

of the matrix. Iterative methods hold more promise in terms of practicality, and can be 

loosely divided into matrix splitting relaxation methods and gradient-based techniques. In the 

present solution algorithm, the Jacobi method (relaxation) and symmetric Gauss-Seidel method 

(relaxation) as techniques to solve the linear system are investigated. 

5.4.1    Jacobi Iteration 

The Jacobi iterative solver splits the matrix into a diagonal, upper triangular, and lower 

triangular part: 

A=[C + V + U] (5.44) 

and defines the iteration as follows: 

pAgn+l,m+l,fc+l  _ Rn+l,m _ [£ + ^] AQn+l,m+l,fc (5 45) 

where AQn+1'm+1'k+1 = Qn+1-"1+1-fc+1 - Qn+1<m. The advantage of this solution method is 

that the matrix multiply [C + U]AQn+1'm+1'k is very easy to carry out; however, the primary 

disadvantage is that the method typically yields very slow convergence. Implementation of this 

technique uses a single loop over the edge structures to multiply the off-diagonal terms, followed 

by a backsubstitution to solve AQ"+1'm+1'<:+1 = V'^RHS. A variant of this algorithm is to 

use "coloring" such that the convergence of the algorithm is improved. For example, if one colors 

all odd-numbered nodes "red" and all even-numbered nodes "black", the following Red-Black 
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Jacobi scheme is given (sometimes given the misnomer of a Red-Black Gauss-Seidel scheme): 

[V] AQR
+l'm+hk+1 = Xn+hm -[C + U\ (AQn

R
+l-m+hk U AQB

+1-m+uk) (5.46) 

[V] AQB
+Um+lM+1 = »n+1-ra -[C + U] (AQn

R 
n+l.m + l.fc+1 u Ag"+l-"» + l-*) (5.47) 

where the subscripts R and B denote the portions of the reference vector which belong to the 

red and black sets, respectively. As the number of colors approaches the number of nodes, the 

colored Jacobi scheme approaches the unidirectional Gauss-Seidel scheme. 

5.4.2   Symmetric Gauss-Seidel Iteration 

The symmetric Gauss-Seidel (SGS) matrix solution method begins by splitting the matrix 

into an upper and lower triangular part: 

A=[C + V + U] (5.48) 

Where the diagonal, upper, and lower operators are defined by 

V- 
(l + 02)VoJ ,    v-   dH( 

At + £ 
e.V(o) 

"Oi       _  " "Oi 

ÖQo 
(5.49) 

u= £ 
• €A/i/(0) dQi K' 

£= E dQi 

(5.50) 

(5.51) 
«€ATL(0) 

Then, the symmetric Gauss-Seidel method can be written as the following two-step process per 

iteration: 

[C + V]AQn+1>m+1'k+15 + [U]AQn+1>m+1'k = Rn+1>ra (5.52) 

[V + U] AQn+1'ra+1'fc+1 + [£} AQn+1-m+1-*+2 = »n+1-m (5.53) 
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Typically, the initial guess for AQ"+1,m+1,° is zero. The implementation of this algorithm is 

particularly simple; for the first pass, sweep forward through the vertices. For every vertex, 

multiply the off-diagonal terms by the most recent solution stored in a buffer AQ, subtract them 

from the corresponding element in ft"+1'm, solve the system (5x5 system, for 3D compressible 

flows) Vx - REJ, and copy the solution back into the AQ buffer. For the second sweep, 

perform exactly the same operations but instead loop backward though the vertices instead of 

forward. Note that the Gauss-Seidel algorithm requires a vertex to surrounding edge map, since 

the sparse matrix-vector multiplies must be undertaken on a row-by-row basis. 

5.5    Turbulence Modeling 

A model for the effects of turbulence is a necessary component for simulating high Reynolds 

number flows. In the present work, the turbulence model is incorporated in a "loosely-coupled" 

procedure; that is, the mean flow equations are solved first, and then the turbulence model is 

solved independently. Coupling between the two is accomplished since the turbulence model 

uses the most recently computed solution (Qn+1), and the solution of the core governing 

equations uses the most recently computed eddy viscosity (/z"). Figure 5.2 outlines this 

procedure. 

5.5.1 Spalart-Allmaras Turbulence Model 

The one-equation turbulence model of Spalart and Allmaras is available for high Reynolds 

number flows [33]; this model formulates a transport equation for the turbulent Reynolds 

number, which is then related to the turbulent viscosity. From the original Spalart and Allmaras 

paper [33], a transport equation can be written for a working variable v (the turbulent Reynolds 

number): 

-JL  + y. v* = c6l [/rl - /„] SÜ+ - [V • ((i/ + v)Vv) + cb2 (V*) 
at        —"—      v „ '    a L 

r.\2 

--V--       convect.on production  ~^".  
change dinusion 
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■         1                ■ ■ laKe lime step 

solve N-S equations subiterations ■*  

Qn+i ßnt 

solve turb. model subiterations 
<4  

QU + l 
ß1+1 

Figure 5.2: The solution procedure that incorporates the turbulence model is decoupled from the 
original system of equations. 

f       Cbl t CwlJw 0-/42 

trip 

T2 (5.54) 

destruction 

For evaluation of the diffusive term, it is useful to slightly rearrange Equation 5.54 into an 

equivalent form. Also, in this work, the trip term is neglected. After nondimensionalization, 

the equation for i> becomes 

f + F.TO = ctl[/rl-/,2]Ä-i t Cbl   f 
CwlJw ~^Jt2 

K 
+ 

{V • [(i/ + (1 + c62) v) Vi>] - cb20V ■ [VÜ]) 
a Re 

where the function definitions in nondimensionalized form are 

(5.55) 

vt = vfvl 

U 
X3 + q,i 

(5.56) 

(5.57) 



X 

s = s + 

v 

V 

Ren2d2 

S = \u\ 

/, t>2 

fv2 = 1 - 
X 

1 + Xfvl 

fw = 9 
1 + 4 u)3 

g6 + c6
w3 

1/6 

9- r + cw2{r6 -r) 

r — 
SK*d2Re 

ft2 = cf3exp (-Q4X2) 

/n = 
default 

(1 + cn) 1^77 [1 - cr3tan  l {cr2f)] - crl    :    modified [34] 

'* = V 2^'5'        Where ^ = ^',J + Uj^ ^U,'J + Uj'^ 

f=(l   -0/2 

The constant definitions are as follows: 

K = 0.41       cr = 2/3       c„i = 7.1 

cbi = 0.1355,        C62 = 0.622, 

C61 
Ctui = —5- + (1 + C62) /K       CW2 = 0.3       0^3 = 2.0, 

cn = 1.0       Q2 = 2.0       ct3 = 1.1        ct4 = 2.0 
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(5.58) 

(5.59) 

(5.60) 

(5.61) 

(5.62) 

(5.63) 

(5.64) 

(5.65) 

(5.66) 

(5.67) 

(5.68) 

crl = 1        cr2 = 12       cr3 = 1 
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Note that Equation 5.66 gives two options for computing fTl. The first option is the default 

value from the original formulation of the model [33]. The second option is a modification to the 

production term suggested in [34] to better preserve vortices in the near field. Unless otherwise 

stated, simulations are performed in the present work using the default option. 

Equation 5.55 must be appropriately discretized for implementation into the unstructured 

solution procedure. A Galerkin finite-element method or a directional derivative method (Section 

5.2.2) is used to discretize the diffusive terms that are inside of the divergence operator; the v 

term outside of the divergence is assumed to be constant within the control volume. A pure 

upwind method is used to discretize the convective terms. The turbulence production and 

destruction terms are evaluated with the assumption that v is constant within the given control 

volume. Each of the terms are appropriately linearized with respect to time (and attention paid 

to positivity considerations) to derive the sparse matrix required for implicit solution of the 

governing equation. 

On no-slip surfaces, the turbulent Reynolds number (t>) is defined to be zero and therefore 

is not solved for. At farfield inflow boundaries, v is set to a freestream value of 1/10 (as per 

the recommendation of [33]) for the boundary face flux evaluation. The dependent variable 

is extrapolated from the interior for the corresponding flux evaluation on farfield outflow 

boundaries. 

5.6   Parallel Methodology 

The present investigation explores several alternative methods of treating the domain 

decomposition, subdomain interface connectivity, and subdomain coupling in the parallel 

unstructured solution algorithm. In addition, proper embedding of the parallelization within the 

iteration hierarchy is discussed. The discussions concerning the iteration hierarchy, subdomain 

coupling, and interface connectivity apply primarily to the mean flow, but are also equally 

applicable to the solution of the turbulence model. 
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5.6.1    Iteration Hierarchy 

The notion of an iteration hierarchy was introduced in [35]. The purpose of the levels of 

the iteration hierarchy is to reduce error components that arise at various stages of the solution 

process. The Newton iteration reduces errors arising from the time linearization of the nonlinear 

terms, while the inner subiterations reduce error that is caused by ine splitting of the linear 

system. In addition, these linear subiterations coupled with subdomain communication can be 

used to eliminate errors that occur due to the loss of coupling caused by the partitioning of the 

domain into subdomains. 

The sequential iteration hierarchy utilized in [36] greatly reduces memory requirements by 

sequential solution within each subdomain. The procedure allows reuse of storage for Jacobians 

and other memory intensive operations, and allows for one update of all communicated quantities 

at the beginning of each time step. 

Since parallel concurrency allows one to update at any desired point in the iteration hierarchy, 

it is possible to relax the restrictions of the hierarchy given in [36] to formulate a more flexible 

updating strategy. Reorganization of the updating structure is intended to address shortcomings 

of the sequential iteration hierarchy: 

• since gradients are updated between time steps, gradients on the interface are effectively 
lagged. Thus, the residual is computed using n time level gradients on the interior, but 
n - 1 time level gradients on the block interfaces. This leads 10 an inconsistency in the 
residual computations at the subdomain interfaces. 

• since the solution Q is updated at the beginning of the time step, it is impossible to carry 
out Newton iterations, if desired. 

• no AQ information is passed during sparse matrix solves, which forces a non-implicit 
handling of the subdomain interfaces. As the number of subdomains increase, the sparse 
matrix solver suffers from convergence degradation. 

The proposed iteration hierarchy for the present work is shown in Figure 5.3, where two 

updating modes are defined: concurrent subdomain iteration and sequential subdomain iteration. 

The sequential mode of subdomain iteration is the same as that presented in [36]. In concurrent 

mode, updating is carried out such that interface quantities are updated at the same time as they 



61 

would be in a single subdomain algorithm. This provides the correct time and/or iterative level 

for each of the quantities that is exchanged via communication. 

Two items should be addressed by the iteration hierarchy in a parallel context: 1) consistency 

of the residual and 2) alleviation of degradation in convergence. 

Residual consistency ensures that the residual computed for every node in the domain is 

the same regardless of the number of subdomains. Since the residual is a function of x. Q, 

and VQ, it is sufficient to make copies of these data available on the subdomain interfaces 

such that the computed residual on each side of these interfaces is the same. Alternatively, one 

subdomain can be responsible for computing the residual for an interface node, and this residual 

is then communicated to the other. The concurrent subdomain iteration relies on the former 

technique, which is to distribute each quantity that is used in the residual calculation (f, Q, VQ) 

and compute the interface fluxes redundantly in each subdomain. Because the present solution 

algorithm uses coarse-grained parallelism (the computational volume is large compared to the 

communication surface), the cost of this redundancy is of small consequence. 

Secondly, the hierarchy should allow for the communication necessary for the parallel 

algorithm to display convergence characteristics reasonably close to its serial counterpart. In 

concurrent subdomain iteration, this is accomplished by allowing communication of AQ during 

the subiterations so that the parallel algorithm is able to access the entire vector corresponding 

to the complete domain rather than just the vector belonging to a particular subdomain. In this 

way, sparse matrix-vector multiplies can be carried out in a parallel context that produce the 

same results as in a sequential context. 

Note that the sequential updating mode given in Figure 5.3 does not allow for residual 

consistency or alleviation of convergence degradation. Although this characteristic is not 

desirable, this variation of the hierarchy is present to support the memory leveraging procedure 

published in [36]. Using this variation, solutions may be performed using (typically) 1/5 of the 

memory consumed by the serial algorithm, since one is able to cycle each block in sequence 

and reuse memory abandoned by the last subdomain in the cycle. The sequential updating mode 
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also allows one to map more than one subdomain onto a particular processor. This capability 

is available at the cost of some convergence degradation and can be used for steady flows only, 

where the residual inconsistency on the interfaces is inconsequential at algorithm convergence. 

5.6.2   Subdomain Interface Treatments 

Two types of subdomain interfaces are considered. The first is a surface interface in which 

the decomposition is along a surface made up of element faces, as shown in Figure 5.4; this is 

the connectivity technique employed by Sheng and Whitfield [36]. The second is a mesh vertex 

decomposition in which distinct node-based control volumes are assigned to subdomains as in 

Figure 5.5; the interface thus lies on the dual to the mesh. Each technique entails a different 

storage and communication paradigm. 

A clarification should be issued here in regard to the terminology used in this work; whereas 

"element-based" and "vertex-based" decompositions indicate directly the entity that is separated 

between the subdomains, a "control-volume-based" decomposition is slightly ambiguous. In a 

node-based solution scheme (as in the current work, control volumes are constructed around each 

node), a control volume decomposition is equivalent to a nodal decomposition, since a vertex and 

a control volume have a one-to-one correspondence. However, in a cell-based solution scheme, 

a control volvue decomposition corresponds to an element-based connectivity scheme, since 

each element corresponds to one control volume (as in [37]). The two types of decompositions 

discussed here, the element-based and node-based decomposition, are presented in the context 

of a nodal control volume solution technique. 

5.6.3 Element-based Connectivity Scheme 

To establish an element-based subdomain connectivity, "phantom" entities are created for 

every primitive in the mesh. This involves creating lists of phantom nodes, elements, boundary 

facets, and edges. It is important to note that since elements are assigned uniquely to each 

partition, nodes on a subdomain interface are duplicated in at least two blocks; thus, the 

ownership status of these nodes is ambiguous. A diagram of the element-based connectivity 
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Figure 5.4: Schematic of the element-based connectivity scheme 

scheme is shown in Figure 5.4. Note that global node numberings are listed first, and subdomain 

local numberings are listed second. 

In a given subdomain, phantom nodes are created for every vertex on the subdomain interface 

as well as for every node connected to the interface in the bordering subdomain. To maintain 

connectivity for these newly created vertices, it is necessary to construct phantom elements, 

phantom boundary facets, and phantom edges. Using these newly created entities, one can treat 

the connectivity structure as a layer of interior entities that can distribute or accumulate computed 

quantities as needed. Note that this treatment leads to a distance-two overlap of the subdomains. 

To compute residual and Jacobian contributions from adjacent subdomains, loops are 

constructed over phantom entities which perform exactly the same operations as the 

corresponding loops over the physical mesh entities. Therefore, each loop in the solver is 

followed by a nearly identical loop over the associated phantom primitive. In these secondary 

loops, tests are performed on the nodes owned by the phantom entities such that data scatters are 

undertaken appropriately. A pseudocode example (for computing the inviscid residual) is below: 
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do i = l,nedge 
nl = node 1 of edge i 
n2 = node 2 of edge i 
gather geometry and solution information for i, nl, n2 
compute flux along edge i 
add flux to residual for nl 
subtract flux from residual for n2 

enddo 

do i = l,neph 
nphl = phantom node of phantom edge i 
nph2 = phantom node of phantom edge i 
nl = node associated with nphl 
n2 = node associated with nph2 
gather geometry and solution information for i, nphl, nph2 
compute flux along phantom edge i 
if nl exists, add flux to residual for nl 
if n2 exists, subtract flux from residual for n2 

enddo 

5.6.4   Node-based Connectivity Scheme 

An alternative method to handle the subdomain interfaces is to uniquely assign each vertex 

to a particular subdomain; this treatment is termed a node-based interface scheme. A diagram of 

this interface connectivity scheme is shown in Figure 5.5. Note that global node numberings are 

listed first, and subdomain local node numberings are listed second. Using this treatment, only 

phantom nodes must be created to fully define the connectivity between each subdomain. 

Using this control-volume based connectivity scheme, each subdomain appears to the solver 

as a complete domain, except that phantom nodes may exist. Normal entities in the grid, such 

as elements and edges, may contain one or more phantom nodes. The only special treatment 

given to these nodes is that accumulations (if they are performed) are ignored, and these vertices 

are the points at which incoming parallel communications take place. Outgoing communications 

take place from any nodes connected to a phantom node. Defining the subdomain connectivity in 

this way leads to a distance-one overlap between subdomains. To compute residual and Jacobian 

contributions across subdomains, no modification to the core computation is required (in contrast 

the the element-based connectivity scheme). 
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Figure 5.5: Schematic of the node-based connectivity scheme 

To compute residual and Jacobian contributions across subdomains, only slight modification 

to the original code has been performed in this work. The modification consists of inserting a 

check before any accumulation to a node takes place, to ensure that the node accumulated to is 

not a phantom node. This check is not strictly necessary (since accumulations to a phantom 

node will be ignored), but is implemented for clarity as well as efficiency purposes. The 

implementation is demonstrated by the following pseudocode: 

do i = 1,nedge 
nl = node 1 of edge i 
n2 = node 2 of edge i 
gather geometry and solution information for i, nl, n2 
compute flux along edge i 
if nl is not phantom, add flux to residual for nl 
if n2 is not phantom, subtract flux from residual for n2 

enddo 

Algorithmic, memory, and execution time issues are associated with the two connectivity 

scheme types, and it has been found that the node-based connectivity scheme has several 

advantages: 
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• improved convergence properties 

• problem size does not (artificially) increase as number of partitions are increased; hence, 
the algorithm can now be scalable 

• less computation per time step 

• eliminates solution ambiguity, since a specific subdomain owns each control volume anr< 
hence its associated volume averaged solution variables 

• amount of connectivity information decreases; thus, memory is conserved 

• handles general element grids and other definitions of nodal control volumes without 
modification 

For edge-based computations (primarily the residual and Jacobian) special consideration 

must be given to the edges that span interpartition boundaries (for ease of exposition, the residual 

calculations are considered here). The difficulty arises since flux integrals on nodes adjacent 

to partition boundaries cannot be completed without some sort of communication. For these 

edges, flux computations may be 1) calculated in a preassigned subdomain and subsequently 

communicated to the neighboring subdomain, or 2) calculated redundantly in each subdomain. 

Thus, the optimal choice depends on whether the speed of communicating the interface fluxes is 

greater than the speed of computing them. In this work, the second option is chosen due to 1) 

in most situations, computing a flux for an edge consumes less overall time than communicating 

the result of a flux evaluation, and 2) message passing for edges would entail the building avi 

maintenance of a secondary (expensive) subdomain connectivity structure. It should be noted 

that even if the flux values are communicated instead of redundantly computed, a preliminary 

communication to/from phantom nodes is still necessary to provide the state vectors for the 

Riemann problem. In a field solver where the residual (and Jacobian) calculations are extremely 

costly to compute (such as in chemically reacting flows), the most efficient choice could be to 

communicate flux evaluations on interpartition edges rather than redundantly compute them. 

5.6.5    Subdomain Iteration Methods 

A primary advantage of implicit methods is the global communication of data that occurs 

each time step.   However, the division of a domain into subdomains implies that, without 
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specific procedures to ensure subdomain coupling, this global communication degenerates into 

propagation of waves only within the individual subdomains. Obviously, the loss of global wave 

propagation leads to a deterioration in convergence characteristics of the parallel algorithm when 

compared to the original serial algorithm. 

One can loosely view the solution of ihe sparse linear system (arising from an implicit 

approximation) as a sequence of sparse-matrix vector products. Each task owns a set of rows of 

the sparse matrix and the corresponding section of a vector to be multiplied. However, a given 

task does not necessarily own the entire section of the vector that must be multiplied by a given 

row of the sparse matrix; so, one must provide a mechanism to pass these nonlocal entries of 

the vector from the owning task to the task that must use the quantity in the multiply operation. 

Storage locations are set aside for this procedure as described in Section 5.6.2. 

The concurrent iteration hierarchy given in Section 5.6.1 allows for proper updating to take 

place during the sparse-matrix vector multiplies (linear subiterations). It is this communication 

which provides the subdomain coupling necessary to approximately maintain the convergence 

rate of the serial implicit algorithm. If the contributions from an adjacent subdomain's control 

volumes are neglected (termed a block Jacobi [BJ] subdomain coupling method), this places 

an artificial boundary within the domain from which no useful information propagates and no 

useful information can penetrate. Hence, convergence is degraded by the presence of subdomain 

boundaries in the domain unless special treatment of these interfaces is undertaken. Given that 

a relaxation method is used on the interior, the BJ technique degenerates into a traditional point 

Jacobi method as the number of subdomains approaches the number of nodes in the domain. 

For relaxation algorithms (such as Gauss-Seidel), this updating during subiterations now 

allows recovery of a modified form of the original algorithm. The degree to which the relaxation 

algorithm is recovered is determined by the frequency of updating of the interface AQ's. A 

weak coupling can be accomplished by updating A<2 only after each subiteration, and maximum 

coupling can be accomplished by updating AQ at every available point; in this work, one has the 
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opportunity to update between color changes (BGS3), directional sweeps (BGS2, BGS3). and 

after each subiteration (BGS 1, BGS2, BGS3). 

To establish terminology for the different levels of subdomain coupling, the acronym BJ is 

used to denote a block Jacobi-type iteration, in which the contributions from other subdomains 

are neglected. BGS1, BGS2, and BGS3 all indicate that blocks are implicitly coupled, the 

strength of which is determined by the trailing number. BGS1 iterations only update interface 

AQ after each subiteration; BGS2 iterations update after each subiteration and after each color 

change; and BGS3 iterations update after each subiteration, color change, and directional sweep. 

Note that for the Red-Black Jacobi algorithm (Section 5.4.1), BGS2 and BGS3 are identical, 

since there is no directional sweep involved. Likewise, for the symmetric Gauss-Seidel algorithm 

(Section 5.4.2), BGS1 and BGS2 are identical since there is only one node color involved. Figure 

5.6 clarifies the four possible subdomain couplings. 

Unfortunately, if the sequential memory leveraging hierarchy (Section 5.6.1) is used, the 

iteration hierarchy is limited to one update point at the beginning of each time step. Since 

no update is possible during linear subiterations, it is not possible to account for neighboring 

subdomain contributions during the relaxation algorithm. Thus, the matrix terms corresponding 

to nodes owned by other subdomains must simply be neglected. Unfortunately, as mentioned 

previously, it is this global communication of data during the subi'erations that gives rise to 

the accelerated convergence rates enjoyed by implicit methods. Thus, the sequential iteration 

hierarchy forces one to use the BJ iteration, in which each subdomain is isolated from the rest 

during the matrix solution. 

In summary, the handling of contributions from neighboring subdomains during the solution 

of the linear system strongly affects the convergence rate of the solver. One can choose to 

neglect the contributions (block Jacobi), or communicate these values at various points during 

the subiteratrve process. Obviously, stronger coupling between subdomains implies a higher 

overhead from message exchanges. The cost of message passing on the host architecture 

determines the optimal tradeoff such that total execution time is minimized. 
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Figure 5.6: Definition of the BGS1, BGS2, and BGS3 subdomain coupling techniques; BJ 
iteration performs none of the above updates during the linear subiteration. 

5.6.6 Domain Partitioning 

The METIS software package [38] is used to partition the unstiuctured mesh. This package 

implements a set of multilevel graph partitioning algorithms [39], [40], [41] intended to perform 

efficient partitioning of arbitrary graphs. This implementation is very fast (a 1 million point grid 

can be partitioned in approximately one minute) as well as having the ability to minimize the 

number of cut edges (which decreases communication costs). Note that the partitions provided 

by METIS are not necessarily contiguous; however, that is not a problem for the current parallel 

solution algorithm. 



CHAPTER VI 

THE DEVELOPMENT OF AN OBJECT ORIENTED VISUALIZATION TOOLKIT 

Although the purpose of this research was not explicitly focused on developing a 

visualization toolkit, the generation of a significant number of methods and algorithms warranted 

a closer look at properly packaging them for use beyond the scope of this problem. The following 

sections discuss the visualization paradigm used in this research, the general framework that 

encompasses the toolkit, and existing class definitions used for prototyping and developing the 

toolkit itself. 

6.1    Visualization Paradigm for This Research 

The work presented in this paper is limited to the analysis and development of the framework 

and the algorithms in a toolkit that operate on grids and solutions. This toolkit is implemented as 

a shared library that may be used in a broader scope for a variety of tasks. The manner in which 

the toolkit is currently used in the ERC is as a computational server in the broader context of 

a visualization package called DTVA (Data Interactive Visualization and Analysis). The system 

architecture of DIVA is illustrated in Figure 6.1 

The box labeled Data Vault represents the disk storage needed to contain the input data. A 

Compute Server is shown as a separate entity that does CPU intensive calculations, for example: 

feature identification, isosurfaces, cutting planes, particle traces, etc. This Compute Server is 

the toolkit that contains the results from this work. The Graphics Server is the piece of the 

architecture that handles taking graphical primitives, such as triangle strips, and outputting them 

to either a file that contains a three-dimensional representation of the image, an image that can 

be generated or rendered off screen, or a computer that is capable of displaying interactive high- 

resolution displays. The connection between all of these pieces can be either high-speed network 

connections or can be resident memory.   If the connection between the Data Vault and the 
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Figure 6.1: The system architecture for DIVA 

Compute Server is a network, than the method of data transmission is one of either data flow or 

data streaming, depending on the type of the input data. Because we have imposed the restriction 

that an input data set need not change format, it is not possible to allow for data streaming of 

unstructured input data. Structured input data, however, may be streamed or decomposed into 

manageable units if necessary. If the connection between the Compute Server and the Graphics 

Server is a net vork, than the method of transmission is data streaming. The Compute Server acts 

as an extraction tool that takes a requested piece of input data, extracts the necessary information, 

and then passes it to the Graphics Server. 

DIVA very closely matches the scientific visualization model as characterized by 

Springmeyer [42]. The visualization paradigm that DIVA embodies is one of focusing on the 

underlying process that is practiced by the user, one of designer-as-apprentice, discussed in 

Chapter 3. The paradigm present in DIVA also takes into account the data communication issues 

that have become a primary focus in all visualization packages currently in use. The issues 

that DIVA and the underlying toolkits face in terms of data management are similar to those 

introduced by Schroeder and Cox [43],[44], [45], in that this research has had to acknowledge 

and deal with data sets that are much too large for resident memory capacity. 
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6.2   The General Framework Encompassing the Toolkit 

The Compute Server is implemented in C++ as a set of base classes. There also exists a 

set of C wrappers around these base classes that provide an external API to the toolkit. As 

was previously mentioned, the Compute Server is compiled into a shared library that can be 

called from an arbitrary front end. It is completely separate from the Graphics Server and has 

no specific ties to any graphics language. This toolkit serves simply to house a set of grids and 

solution, allowing for both queries and extractions on this data. This chapter does not discuss 

specific algorithms for either queries or extractions, but does serve to set the stage for how 

these algorithms come together to act as methods in this Compute Server. The Compute Server 

is capable of operating in a distributed fashion, meaning distributed from both the front end 

and from the graphics. It is designed to be able to communicate through pointers if all pieces 

reside on the same machine, either through a single processor, or through a shared memory 

arena. It is also designed to allow for distributed communication across a network through 

the Remote Procedure Calling (RPC) protocol using the External Data Representation (XDR) 

library that represents data structures in a machine-independent form [46]. RPC provides ability 

to communicate with procedures or processes outside of an application's current address space. 

This allows a local program to execute a procedure on a remote machine, passing data to it 

and receiving data from it. Using the RPC protocol, the Compute Server can reside on a 

geographically distant machine from a front-end graphical display. This makes the capability 

of the Compute Server much more attractive because this design directly addresses the concern 

of having to invest in expensive front-end graphical displays with extraordinary amounts of 

memory. Eventually, the size of the problem would prohibit having to have the Compute 

Server operate in the same address space as the graphical front-end. The Compute Server 

contains methods that allow for query capability, short burst questions that return reasonably 

small answers, and for extractions. Extractions are used to reduce the focus of interest from the 

entire data set to regions defined by a set of inputs. These extractions can be cutting planes, 

isosurfaces, particle traces, boundary surfaces, and in the most extreme sense, the volume itself. 
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Algorithms to perform both queries and extractions will be discussed in more detail in the next 

chapter. The following section provides an explanation of each of the classes that together make 

up the Compute Server. 

6.3   Class Definitions 

The classes are presented by discussing the rudimentary framework classes and 

administrative classes first. This gives an idea of how the entire Compute Server is put together 

to form a library of routines that work together to achieve a common set of goals. Presented 

after that are the grid classes that house every type of grid that may be supported in this current 

implementation. Grid components classes are discussed to define how base level extractions are 

made from the grids themselves that are native to specified grid types. Grouping classes are 

shown for facilitating multiple grid capabilities. Function value classes explain how both scalar 

and vector data are handled. Extraction classes define what types of extractions are possible 

through the current Compute Server. Graphical properties classes provide an introduction to 

graphics entities that are more naturally housed within the confines of the Compute Server. 

6.3.1 Framework and Administrative Classes 

The top level management object in the Compute Server is called the csObject. It contains 

a pointer to a class called csLinkedLisi and a void pointer to a rendering object. Because the 

Compute Server is designed to be independent of a graphical language, and because it may 

operate as a query and extraction device that outputs data in a file format as well as graphical, 

the rendering object pointer may be empty. This allows the Compute Server to behave in a batch 

type format that requires no front end display and may be driven by a command line interface. 

This capability, however simple it may be, has been invaluable in generating visualizations for 

the large scale data sets that have come through the ERC. It is not feasible to expect the user to 

sit at a workstation and wait for extractions to take place as they are being displayed. Rather, 

a situation in which a batch extraction can be performed and written to disk for later display 

has been very useful in a production visualization setting.  The csLinkedList class embodies 
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the concept of a linked list of character strings with corresponding void pointers to entities and 

their corresponding enumerated types. Each entity that is a member of the csObject manager 

must have a name associated with it. The names are assigned at creation, and serve as a unique 

identifier for each entity. The csLinkedList class handles the creation of the linked list, additions, 

deletions, and queries. The next version of the Compute Server will allow for a csHashTable 

class to handle the management of these named entities. It is currently encumbant upon the 

user to avoid name clashes. Future versions will provide a capability to detect and correct name 

clashes. The named entities that are currently supported in the Compute Server are groups, grids, 

scalar and vector functions, blocks, computational surfaces, boundary surfaces, cutting planes, 

particle traces, isosurfaces, color bars and axes. 

6.3.2 Grid Classes 

The basic entity in the Compute Server is the grid. The function of this set of classes is 

to operate on either the grids themselves or to operate on extractions that were created from 

these grids. For this reason, much care and thought was put into the design of the grid classes 

themselves. There is a basic csGrid class that houses a set of base functions that are common to 

all types of grids and a set of virtual functions that must be defined uniquely inside each specific 

type of grid. TK csGrid contains a pointer to a csObject, the manaser object. It also contains 

the name of tne csGrid, the type, the dimension, bounding volume information, the number of 

points inside the grid, the number of unique elements that make up the grid, and various other 

internal management information. A csGrid can be typed as unstructured, structured, mixed 

element, scattered, or unknown. The dimension is 2D, 3D, or 4D. The implementations of 2D 

and 3D grids are done separately to avoid any unnecessary memory allocations. A pointer to a 

csGroup is also retained to allow for a multiple grid capability. This is useful when a larger grid 

is decomposed into smaller units for computational purposes, but must be brought back together 

for extractions or display. 
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6.3.2.1    Virtual Definitions 

A set of virtual functions that each grid must facilitate are defined in the csGrid class 

explicitly. These virtual functions include the capability to get element information, element 

neighbor information, obtain an element that contains a point, create the necessary extractions for 

an initial display, calculate cutting planes, and create isosurfaces. These virtual functions allow 

for higher level methods to insulate the details on a specific grid type from the algorithm itself. 

For example, the fundamental algorithm for calculating particle traces is the same in the abstract 

sense. It is only specific to a grid type in traveling from one element to the next (getting the 

element neighbor), interpolating function values inside a particular element, etc. The presence 

of virtual functions inside the csGrid class allow the formation of a generic csParticleTrace class 

that is capable of calculating particle traces on a variety of valid grid types. The virtual functions 

inside the csGrid class allow the details for the differences in behavior of each grid type to 

be encapsulated inside the specific grid itself. The individual grid classes that are supported 

are structured curvilinear, unstructured tetrahedral, unstructured mixed element, and scattered 

data. For the sake of accomplishing goal number three, minimizing resident memory usage, 

each of the supported grid classes was implemented separately. The Field Encapsulation Library 

(FEL) presented in Chapter 2 is written as a set of object oriented classes as well. However, it 

distinguishes algorithmic behavior at the element level [47]. The Compute Server distinguishes 

algorithmic behavior at the grid level. Computationally, the smallest named entity is a grid, 

or some extraction that has been taken from a grid. This treatment of class management is 

preferable when implementing algorithms such as querying an element neighbor. At the grid 

level, it is possible to insulate most of the detail inside the specific grid implementation class 

itself, and allows for refinements to improve both speed and memory usage. A structured 

curvilinear grid does not require an explicit neighbor map inside blocks. However, between 

block boundaries, an explicit neighbor map is required to travel from block to block seamlessly. 

FAST uses implicit neighbor mapping for traversal inside a block, but stops at block boundaries 

unless an IBLANKED grid has been input that explicitly gives block to block mapping [48]. 
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The structured curvilinear grid implemented inside the Compute Server calculates this explicit 

neighbor map for block to block traversal transparently to the user. In an unstructured grid, an 

explicit neighbor map is required to be stored. This low level detail is transparent to the user by 

providing these virtual functions in the abstract csGrid class. 

6.3.3 Grid Components Classes 

There are lower level entities that form regions of interest in a grid that are not necessarily 

extractions in the purest sense. For structured grids, these are blocks and computational surfaces. 

A structured grid is made up of blocks that speak in terms of i, j, and k indices. At a specified 

block, i, j, or k index, a computational surface can be seen. The Compute Server allows for 

these entities as separate classes and unless the user specifically queries information from them; 

the details of these classes are transparent to the user. They serve to encapsulate the user from 

detail that is not critical information. The language in an unstructured grid is very different. An 

unstructured volume grid is made up of surface grids that represent boundary conditions and 

the field itself. Again, this information is hidden from the user unless it is specifically queried. 

These entities are automatically generated when the csGrid is created. Blocks and computational 

surfaces are generated only if the volume grid is structured curvilinear, and boundary conditions 

and boundary surfaces are generated only Jf the volume grid is unstructured. 

6.3.4 Grouping Classes 

A csDataGroup class is available for grouping instances of data objects that represent 

grids, solutions, and extractions. These entities are in turn pieces that, when combined, form 

a large grid. The large superset is decomposed into smaller units to enable parallelizing the 

computations of the solution values at the grid points. When trying to visualize this entity, 

it can be input as separate grid and solution objects that must be grouped to provide a single 

representation to the user. The csDataGroup allows the melding of these separate data objects 

into a single group. When extractions are computed, they are done so on the grouped entity. The 

user does not carry the burden of having to manually regroup these entities. 
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6.3.5 Function Value Classes 

Function values are stored in the Compute Server in one of two classes, the csScalarFunction 

class or the csVectorFunction class. The two classes are very similar in nature. They have 

the same set of methods. However, the csScalarFunction manages scalar variables, and the 

csVectorFunction manages the vector variables. Both classes store the function name, a pointer 

to the associated grid class, a pointer to or a copy of the actual data values themselves, depending 

on the type of communication, and extrema information. All functions are required to have the 

same number of point values as the grid that it is associated with. The Compute Server handles 

only functions that come in with a grid. The grid is assigned at creation and must be specified by 

the user. The Compute Server does checking to ensure that the number of points in the function 

match the number of points in the specified grid. This grid is also required to be created previous 

to the creation of function values. 

6.3.6 Extraction Classes 

There are currently three types of extractions that are fully implemented inside the Compute 

Server: cutting planes, isosurfaces, and particle traces. The details of the algorithms are 

discussed in the next chapter. This section serves to point out that the management of the specific 

properties of each of the extractions is done in the classes themsel es. The actual traversal or 

interpolation that is performed within the context of these specific algorithms is handled by the 

grid on which the extraction is being calculated. 

6.3.7 Graphical Properties Classes 

Although the purpose of the Compute Server is not necessarily tied to a graphics system, 

and does not have to be used to do any post-processing, there is a need to keep some graphical 

information present in the Compute Server. This graphical information is an overlap with the 

function data. For example, a csColorBar class is provided to manage color bar information that 

can be used to create and obtain the display of entities using a user specified color map. The 

color map is managed like all other entities in the Compute Server, by name. Any number of 
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colors can be specified to make up the color map. Additionally, a csAxis class is also provided 

for the management and display of legends and axes on the computational data. 

6.4   Summary 

An overview of both the design and the implementation of the Compute Server has been 

given. It is now relevant to begin discussing how the classes and the structure of these classes 

inside this entity facilitate the rapid prototyping of efficient methods for both the query and 

extraction of information from the given input data. This efficiency, as will be discussed 

in the next chapter, refers to both efficient memory usage and efficient computational time 

performance. 



CHAPTER Vn 

DESCRIPTION AND ANALYSIS OF THE KEY VISUALIZATION TOOLKIT 

ALGORITHMS 

This chapter presents and provides analysis for the key algorithms that make up the Compute 

Server. These algorithms have been refined and tailored to achieve a balance between both 

minimizing resident memory and optimizing speed performance. The concepts behind these 

algorithms are not new. Surface extraction and visibility ordering of unstructured polyhedra are 

not new to the visualization community. However, these algorithms have been optimized for 

performance in a computational setting for the purposes of feature extraction and visualization 

of large scale unstructured scientific data sets. These uniquely optimized algorithms placed in 

the framework discussed in the previous chapter make this work an original effort to fine tune 

the basic set of algorithms needed to compute and display features and extractions from large 

scale CFD data sets. This effort has certainly been a creative endeavor to investigate the inner 

workings of all components of the Compute Server. These components include the core data 

structures, search algorithms that use these data structures, and extractions that use both. Th'^ 

work was conducted as a result of investigating the current state-of-the-art and realizing that 

many of the existing techniques do not clearly delineate where the cost/performance line is. This 

is because many existing systems attempt to create a general framework and a general set of 

algorithms that is capable of handling any type of input data. The algorithms presented in this 

chapter have not thoroughly been investigated on all possible types of input data; rather, the 

scope has been limited to include only data from large scale unstructured CFD simulations. 

7.1    Data Structures 

Although data structures are a vital component in any algorithm, they are often the most 

overlooked component. An inappropriate choice for basic data structures will often lead to either 
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continuous algorithmic reworking to overcome this, or as is often the case, a total rewrite of the 

software with different data structures that have been found to be more applicable to the problem 

at hand. Given the premise that a balance must be achieved between both minimizing resident 

memory and optimizing speed performance, it was clear that the data structures had to be simple 

enough to minimize any overhead needed for constructs such as pointers, structures, classes, etc. 

The following sections outline the data structures that serve as the basis for all searching and 

unstructured grid traversal. 

7.1.1 Defined Data Types 

The Compute Server operates on a set of predefined data types [49]. These data types are 

used throughout all of the algorithms. Although the algorithms for traversing and visualizing 

unstructured volumes can be extremely complex, the data structures need not be. In fact, to 

accomplish the goal of minimizing memory usage, all significantly sized data is placed in a 

one-dimensional array. The defined types shown in Table 7.1 show how these one-dimensional 

arrays can be type defined. Placing large amounts of data in one-dimensional arrays eliminates 

any overhead in pointer allocations. Additionally, the manner in which these items are typed 

facilitates ease-of-use and improved readability of the code. The data placed in these typed 

arrays may be < xessed as if they were allocated for its respective dimension. For example, 

an item vertex at index i in an array of FLOAT3D values can be accessed as vertex[i][0], 

vertex[i][l], and vertex[i][2]. If an array of FLOATJ3D values is allocated for N values, then 

the amount of memory used is exactly 3*N. There is no overhead for pointers and no need for 

double dereferencing. 

7.1.2   Array Indexing 

All of the algorithms that are presented in this work operate on a variety of type defined one- 

dimensional arrays. The manner in which they operate on these arrays has a common theme [50]. 

This theme will be discussed using the structures needed to compute the elements surrounding a 

point. This algorithm is presented in detail in the next section. 
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Table 7.1: Defined Data Types in the Compute Server 

typedef char CHARJ21[ 21]; 
typedef int INT.1D; 
typedef int INT^D[2] 
typedef int INT_3D[3] 
typedef int INT_4D[4] 
typedef int INT_5D[5] 
typedef int INT.6D[6] 
typedef int INT_7D[7] 
typedef int INT_8D[8] 
typedef float FLOATJD; 
typedef float FLOAT_2D[2]; 
typedef float FLOAT_3D[3]; 
typedef double DOUBLEJD; 
typedef double DOUBLE_2D[2]; 
typedef double DOUBLEJD[3]; 

The following lines of code show the arrays needed to compute and store the elements 

surrounding a point. tNESP is used as a temporary array needed to construct nESP. nESP is the 

actual storage needed to construct the eSP array. eSP contains the actual elements surrounding 

each given point. 

INT_1D *tNESP =NULL; //A temporary array for constructing nESP 
INTJD *nESP    = NULL; // Contains information for number elements surrounding a point. 
INT_1D *eSP      = NULL; // Contains the specific elements surrounding each point. 

The first operation in the creation of the elements surrounding a point is to allocate both nESP 

and tNESP tNESP is allocated after nESP because it will be immediately deallocated once nESP 

has been fully constructed. Each of these arrays is allocated to be of length numberOfNodes+1. 

Each index in both arrays is initialized to zero. 

nESP = new INT-lD[numberOfNodes+l]; // Allocate memory for actual array. 
tNESP = new INT_lD[numberOfNodes+l];       // Allocate memory for temporary array. 
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for (i = 0; i <= numberOfNodes; i++) // For i cycles over all nodes in grid plus one. 

{ 
tNESP[i] = 0; // Initialize temporär}' array to contain zeros. 
nESP[i] = 0; // Initialize actual array to contain zeros. 

} // End cycle over all nodes in grid plus one. 

A pass is chen made over all of the elements to increment the values in tNESP. After this 

loop, the values in tNESP reflect the actual number of elements surrounding each point. 

for (i = 0; i < numberOfElements; i++) // Cycle over all elements. 

{ 
for (j = 0; j < numNodesInElement; j++)// Cycle over all nodes in element i. 

tNESP[element[i][j]]++; // Increment tNESPfl]. 

} 

Once the arrays have been allocated and initialized, and the number of elements surrounding 

each point in the input grid has been set, nESP is updated to act as an index into the eSP array. 

for (i = 1; i <= numberOfNodes; i++)   // For i cycles over all nodes plus one starting at one. 
nESP[i] = nESP[i-l] + tNESP[i-l]; // Increment nESP[i] to indicate all elements 

// surrounding a point up to that point. 
delete[] tNESP; // Deallocate the memory needed for this temporary variable. 

The last pass is made to loop back over all nodes of every element in the input grid. During 

this pass, an entry is made for each element index into the eSP array. This operation adds a given 

element i to the list of elements surrounding the points that make up the construction of the eSP 

array. 

eSP = new INT_1 D[nESP[numberOfNodes]];      // Allocate memory for content, 
for (i = 0; i < numberOfElements; i++) // Cycle over all elements. 

{ 
for (j = 0; j < numNodesInElement; j++)      // Cycle over all nodes in element i. 

{ 



plndex = element[i] [j]; 
elndex = nESP[pIndex]; 
eSP[eIndex] = i; 
nESP[pIndex]++; 

// Dereference the point index. 
// Dereference the element index. 
// Add the element i to eSP. 
// Increment index nESP[p!ndex]. 
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An example of this set of operations is shown in Figure 7.1. Part A shows tNESP after the 

first pass. Each of the values in tNESP reflects the number of elements surrounding that point. 

tNESP[0] = 4 indicates that point 0 has 4 elements surrounding it. Part B is an example of what 

nESP contains after it is updated. At this point nESP[0] reflects that point 0 has a beginning index 

of 0 into the eSP array. nESPfl] = 4 indicates that point 1 has a beginning index of 4 into the eSP 

array. Part C illustrates the contents of both nESP and eSP after the construction phase. nESP[0] 

= 4 indicates the ending index into eSP for all elements surrounding point 0. Because we are 

at the first point in nESP, the beginning index into eSP is 0. The elements surrounding point 0 

are contained in indices 0, 1,2, and 3. This is consistent with the contents of eSP containing 

elements El, E2, E3, and E4. nESP[l] = 7 indicates the ending index into eSP for all elements 

surrounding point 1. The beginning index into eSP for point 1 is nESP[0] = 4. Again, this is 

consistent with the elements E5, E6, and E7, starting at index 4 and ending at index 6. 

(A) tNESP [43216410] 

(B) nESP [0479 10 16 2021] 

(C) nESP [4 7 9 10 16 20 21 21] 

eSP [E1 E2 E3 E4   E5 E6 E7   E8 E9 ...] 

P1 P2 P3 

Figure 7.1: Index Arrays Used to Construct Elements Surrounding a Point 



As was stated earlier, this method of using the one-dimensional arrays is one that is used 

frequently throughout all algorithms in the Compute Server. The next section presents a detailed 

algorithm and analysis for finding the elements surrounding each point in the input grid. 

7.1.3 Elements Surrounding A Point 

Before any of the actual algorithms can be performed, a set of base data structures must he 

created. The first is that of finding and recording the elements surrounding a point [50]. The 

concept of elements surrounding a point is illustrated in Figure 7.2. For a given point P, the set 

of elements surrounding this point are those whose faces contain the point P. In Figure 7.2, the 

elements surrounding point P are shown to be elements El, E2, E3, E4, E5, and E6. 

point P 

ESP[P] = [E1, E2, E3, E4, E5, E6] 

Figure 7.2: Elements Surrounding a Point 

The following algorithm is based on that given in [50]: 

1. Allocate the array nESP at a size of numberOfNodes+1. nESP is the array that will be 
used to both construct and index into the eSP array. 

2. Allocate tNESP at a size of numberOfNodes+1.   tNESP is a temporary array used to 
construct nESP. 

3. Cycle over all nodes and initialize tNESP and nESP to zero. 

4. Cycle over all elements in the input grid. 
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• Get the point index plndex for each node of element i. 

• Increment tNESP[pIndex] by one. 

5. Cycle over all nodes i in the input grid starting at one, and set 
nESP[i]=nESP[i-l]+tNESP[i-l]. 

6. Delete the memory allocated for tNESP. 

7. Allocate the array eSP at a size of iiESP[numberOfNodes]. 

8. Cycle over all elements i in the input grid. 

• Get the point index plndex for each node j of element i. 

• Let elndex = nESP[pIndex]. 

• Set eSP[eIndex] = i. 

• Increment nESP[pIndex] by one. 

Both nESP and tNESP in steps 1 and 2 are allocated to be of length numberOfNodes+1, 

and are thus 0{M + 1) in memory where M is the number of nodes in the input grid. Step 

3 of the algorithm cycles over all nodes and thus operates in O(M) time. The loop in step 4 

cycles over all nodes in all elements in the input grid making it ö{aN) in time, where Ar is the 

number of elements in the input grid, and a is a constant that represents the average number of 

nodes per element. Because we only deal with elements whose number of nodes range from 

four for tetrahedra to eight for hexahed'U, the constant a is very small compared to N, and is 

in the worst case 8. Step 5 of the algorithm operates in Ö(M + 1) time. Step 6 is the point 

in the algorithm where the temporary memory allocated for tNESP can be released. Because 

tNESP was allocated after nESP and no additional memory has been allocated, this release helps 

to avoid memory fragmentation issues. Step 7 allocates an array of size nESP[numberOfNodes]. 

Although we do not know the exact value of nESP[numberOfNodes] a priori, we can easily make 

a reasonable estimate for the types of input grids in this research. For a purely tetrahedral input 

grid generated for the purpose of solving computational fluid dynamics phenomena, the estimate 

would be 24 * M, and is typically smaller than this. This estimate is a result of the manner in 

which the grid must be constructed to ensure reasonable quality. For a grid constructed solely of 

six noded pentahedra (prisms), the estimate would be 12 * M. A purely hexahedral grid would 



87 

give an estimate of 8 * M. Again, M is the number of nodes in the input grid. Given the above 

stated numbers, a worst case estimate of the amount of memory allocated for eSP is 0(24 * M). 

An average estimate is 0(16 * M). We can easily state this as O(cM) where c ranges from 8 

to 24 for a mixed element input grid, and M is the number of nodes in the input grid. Step 8 

operates in 0(A:) time where N is the number of elements in the input grid. An overall analysis 

of this algorithm tells us that it operates linearly in both space and time. It is O(cM) in space 

and 0{aN) in time, c << M and a « N. The detailed implementation of this algorithm is 

given in Appendix C. 

7.1.4 Localized Decomposition Into Tetrahedra 

The algorithms that are to be presented in future sections will operate on a variety of element 

types. As has been previously stated, these elements are tetrahedra, pyramids, prisms, and 

hexahedra. The basic type of element that all of the algorithms in the Compute Server operate 

on is the tetrahedra. All other types of elements that have been introduced can be locally 

decomposed into tetrahedra, and then each tetrahedra can be handled similarly. It is termed 

local since the decomposition is performed within the confines of the algorithm. No additional 

memory is required, and the operation is just a matter of indexing appropriately into the points 

making up the global element being decomposed. An example of the de composition of a pyramid 

is illustrated in Figure 7.3. Part (A) shows the original pyramid. Part (B) shows how the pyramid 

can be decomposed to form two full face matching tetrahedra. The first tetrahedra is shown as 

being constructed by the points PI, P4, P3, and P5. The second tetrahedra is shown as being 

constructed by the points PI, P2, P3, and P4. Additionally, Part (C) gives an exploded view of 

the two tetrahedra that are combined to form a pyramid. 

The decomposition of a prism is shown in Figure 7.4. The original prism is shown in part 

(A). Part (B) illustrates the combined view of the three tetrahedra that are generated as a result 

of the decomposition. They are full face matching. The first tetrahedra is constructed from the 

points PI, P2, P3, and P4. The second tetrahedra is constructed from the points P2, P3, P4, and 
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T2 = P1 P4 P3 P5 

P1 P2 

' Ti = P1 P2 P3 P4 

Figure 7.3: Local Decomposition of a Pyramid into Tetrahedra 

P5. The third tetrahedra is constructed from the points P3, P4, P5, and P6. Part (C) gives an 

exploded view of the three tetrahedra. 

T3 = P3 P4 P5 P6 

T2 = P2 P3 P4 P5 

T1 = P1 P2 P3 P4 

Figure 7.4: Local Decomposition of a Prism into ^Jtrahedra 

The decomposition of a hexahedra is shown in Figure 7.5. The original hexahedra is shown 

in part (B). It is made up of 8 point indices PI, P2, P3, P4, P5, P6, P7, and P8. A hexahedra 

can be thought of as being divided into two prisms which can be further decomposed into three 

tetrahedra each. Part (A) illustrates the three tetrahedra that are a result of subdividing the first 

prism. The first tetrahedra is made up of points PI, P3, P4, and P7. The second tetrahedra is 

made up of points PI, P7, P4, and P8. The third tetrahedra is made up of points PI, P7, P8, and 

P5. Part (C) illustrates the three tetrahedra that are a result of subdividing the second prism. The 

first tetrahedra is made up of points PI, P2, P3, and P5. The second tetrahedra is made up of 

points P2, P3, P5, and P6. The third tetrahedra is made up of points P3, P5, P6, and P7. 
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(A) 
T6 = P1 P7 P8 P5 

P8 

(B) (C) 
T3 = P3 P5 P6 P7 

T5 = P1 P7 P4 P8 
°° 

P8 

/ P6. /' 
Hb' 

P4 

/ / 
P1 ?2 

P7 
T2 = P2 P3 P5 P6 

P6 

P3 

T4 = P1 P3 P4 P7 T1 = P1 P2 P3 P5 

Figure 7.5: Local Decomposition of a Hexahedra into Tetrahedra 

7.1.5    Element Neighbors 

To conclude the presentation of the basic data structures, the creation of an element neighbor 

map is presented [50]. Before discussing the specific algorithm, the concept of an element 

neighbor is introduced. Figure 7.6 displays the element neighbors for a tetrahedral element. 

Element neighbor one, Nl, is the element *!.dt contains a face that matches points PI, P2, and 

P3. Element neighbor two, N2, is the element that contains a face that matches points P2, P3, 

and P4. Element neighbor three, N3, is the element that contains a face that matches points P3, 

P4 and PI. Element neighbor four, N4, is the element that contains a face that matches points 

P4, PI and P2. 

Figure 7.7 displays the element neighbors for a pyramid. Element neighbor one, Nl, is the 

element that contains a face that matches points PI, P2, and P3. Element neighbor two, N2, is 

the element that contains a face that matches points P2, P3, and P4. Element neighbor three, N3, 

is the element that contains a face that matches points P3, P4 and P5. Element neighbor four, 
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N3\ P4 

Figure 7.6: Element Neighbors For a Tetrahedra 

N4, is the element that contains a face that matches points PI, P3 and P5. Element neighbor five, 

N5, is the element that contains a face that matches points PI, P2, P4, and P5. 

N4- 

Figure 7.7: Element Neighbors For a Pyramid 

Figure 7.8 displays the element neighbors for a prism. Element neighbor one, Nl, i« tl.e 

element that contains a face that matches points PI, P2, and P3. Element neighbor two, N2, is 

the element that contains a face that matches points P2, P3, P6, and P5. Element neighbor three, 

N3, is the element that contains a face that matches points P4, P5 and P6. Element neighbor four, 

N4, is the element that contains a face that matches points PI, P3, P6 and P4. Element neighbor 

five, N5, is the element that contains a face that matches points PI, P2, P5, and P4. 

Figure 7.9 displays the element neighbors for a hexahedral element. Element neighbor one, 

Nl, is the element that contains a face that matches points PI, P2, P3, and P4. Element neighbor 

two, N2, is the element that contains a face that matches points P2, P3, P7, and P6. Element 

neighbor three, N3, is the element that contains a face that matches points P5, P6 P7, and P8. 



►N2 

Figure 7.8: Element Neighbors For a Prism 

Element neighbor four, N4, is the element that contains a face that matches points PI, P4, P8 

and P5. Element neighbor five, N5, is the element that contains a face that matches points P3, 

P4, P8, and P7. Element neighbor six, N6, is the element that contains a face that matches points 

Pl,P2,P6,andP5. 

pa tN3 4? 

N4* 

**N2 

*UG N1 

Figure 7.9: Element Neighbors For a Hexahedra 

The algorithm to construct the element neighbor map is based on the algorithm that was 

presented in [50]. It assumes that the map containing the elements surrounding a point has 

already been constructed. 

1. Allocate the array eN that will contain the element neighbor information. 
eN = new INT_6D[numElements]. 

2. Cycle over all neighbors j of all elements i and initialize each entry in eN. 
eN[i][j] = -555. 
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3. Cycle over all neighbors j for all elements i in the input grid. 
If eN[i][j] == -555 (the element neighbor has not been set), 

(a) Find the element ne and the face nf that matches element i at face j. 

(b) SeteN[i][j] = ne. 

(c) if ne != -999, eN[ne][nf] = i. (If ne is -999, then the neighbor for element i through 
face j is a boundary face. Otherwise, this value is a valid element neighbor.) 

Step 1 of the algorithm shows us that the amount of memory required to construct the 

element neighbor map is 0(6 * N) where Ar is the number of elements in the input grid. This 

version of the algorithm assumes that we are dealing with the mixed element type grid. One 

array is used to house the entire element neighbor map in a mixed element grid. It is sized 

according to the element with the most number of neighbors, the hexahedra. If the input grid 

is purely tetrahedral, then the size of the memory is actually 0(4 * A7), resulting in no wasted 

memory. There is only a waste of memory when dealing with mixed element grids. This can 

easily be corrected by keeping track of separate structures for tetrahedra, pyramids, prisms, 

and hexahedra. For demonstration purposes, we will keep a single structure and accept the 

memory overhead. Step 2 cycles over all neighbors of all elements and initializes all entries 

in the element neighbor structure. This loop operates in 0(6 * N) in the worst case. Step 3 

again cycles over all neighbors in all elements. If the element neighbor has not been set, then 

the first operation is to find the element containing a face that matches the current element and 

face at the nodes. Finding this common element operates in 0(c) time where c is the maximum 

number of elements surrounding the nodes making up the face in question. As was stated in 

the section discussing elements surrounding a point, a reasonable worst case estimate for c is 

approximately 24. An average value would be somewhere in the range 8 to 24, making c very 

small in comparison to the number of nodes in the input grid. The other operations in the loop 

in step 3 operate in constant time, making the loop in step 3 operate in a total time of 0{cN). 

Constructing the element neighbor map is performed exactly once for a given input grid. As long 
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as the grid connectivity does not change, the element neighbor map is valid. The algorithms that 

are presented in future sections require the use of this element neighbor map. After the element 

neighbor map is constructed, the memory needed for elements surrounding a point is deallocated. 

None of the algorithms in the Compute Server require explicit use of the elements surrounding a 

point. Thus, at this point, the required memory returns to 0(6 * N) where A* is the total number 

of elements in the input grid. A full implementation of the construction of the element neighbor 

map is shown in Appendix D. 

7.2   Searching 

Equal to the concern for the construction and memory usage needed for the base data 

structures is the concern for traversing the unstructured grid. Almost every algorithm in the 

Compute Server that performs a significant task requires some sort of searching to be done. The 

discussion of searching is shown in two parts. First, a presentation of a volumetric chunking 

algorithm is presented and analyzed. Second, the actual searching schemes which use this 

volumetric chunking are presented and analyzed. 

7.2.1 Volume Chunking 

Because searching is such a significant part of the navigation and display of unstructured 

volumes s great deal of time was spent investigating existing methods for searching unstructured 

grids, and for possible new ideas to reduce both memory overhead and search time. Additionally, 

a significant problem occurs when searching through a volume that contains embedded 

boundaries. Using traditional searching techniques for unstructured grids [50], the search can 

hit an embedded boundary during the traversal and exit out of the search, forcing a global search 

of all elements in the grid. This situation is illustrated in Figure 7.10. The starting element is 

shown as being located in front of the embedded boundary; the actual element containing the 

given point is located behind the embedded boundary. Traditional searching techniques navigate 

the search in the direction vector from the starting element towards the given point. At some 

point in the search, the traversal collides with the embedded boundary, and fail; this forces a 
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brute force search of all unvisited elements. This is obviously an undesirable situation. For this 

reason, much work has been done to impose an additional structure on the existing data. Current 

methods include, but are not limited to, the creation of additional structures such as octrees, 

range trees, interval trees, etc. These structures are generally used to house or categorize the 

original data. 

Element 
Containing 
Point 

Point which 
traditional 
search algorithm 
fails 

Starting Element 

Figure 7.10: A   Common  Problem  With  Embedded  Boundaries  and  Traditional  Search 
Techniques 

Methods that use octrees are perhaps the simplest to create and understand, and several 

versions of building and traversing octrees exist today [51], [52], [53]. Wilhelms and Van Gelder 

[54] use a branch-on-need octree to purge subvolumes in the creation of isosurfaces. This method 

has a worst case time efficiency of 0(k + k\og(n/k)) where n is the total number of cells, and k 

is the number of active cells [55]. This method applies only to structured data sets, and requires 
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significant changes to allow for unstructured input data. Octrees have been primarily applied to 

structured grids and are not easily adapted to deal with unstructured grids [55]. 

Range-based methods apply to both structured and unstructured data, but are generally more 

suitable for unstructured data because they are unable to exploit implicit adjacency information 

found in structured data sets. Range-based methods have higher memory requirements. 

Gallagher [56] proposes a method based on a subdivision of the range domain into buckets, 

and on a classification of intervals based on the buckets they intersect. The tradeoff between 

efficiency and memory requirements is highly dependent on the resolution of the bucketing 

structure [57]. Giles and Haimes [58] report an approach in which two sorted lists of intervals are 

constructed in a preprocessing phase by sorting the cells according to some predefined minimum 

and maximum function value. This method exploits the concept of global coherence. More 

recently, Shen and Johnson [59] try to improve and overcome some of the limitations presented in 

[56] and [58] by adopting similar structures to address global coherence. However, a worst case 

computational complexity of O(N) has been estimated for all range-based methods discussed 

above [55]. 

Livnat [55] introduced the concept of a span space, a two-dimensional space where each 

point corresponds to an interval in the range domain. The span space is useful to geometrically 

understand range-based methods. A kd-tree is used to locate the active intervals in this space, 

achieving an ö(s/n + k) time complexity in the worst case. In a more recent paper, Shen [60] 

proposed the use of a uniform grid to locate the active intervals in the span space. The overhead 

memory required to impose this kd-tree is approximately 25% above the memory required to 

house the original grid itself, and in many case greater than 25%. 

During the course of this research, both the octree method and the range tree method were 

implemented and tested to determine usability. It was found that the memory overhead required 

for both the octree and the range tree outweighed any potential gain in both a global and local 

searching situation. The branch-on-need octree given by Wilhelms and van Gelder stated an 

overhead of approximately 20%. The kd-tree imposed on the original grid that was presented 
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above showed an overhead of over 25% above the memory required for the input data. For small 

problems, this overhead is not a significant problem. However, for large data sets such as those 

in this work, an overhead of greater than 20% can mean the difference between being able to 

visualize or analyze the problem and not being able to. For this reason, a simpler data structure 

was adopted to impose additional structure information on the input grid, while maintaining a 

memory overhead of less than 20%. This data structure and its use is termed "volume chunking". 

Given a number of x divisions, y divisions, and z divisions, a volume can be decomposed into 

subvolumes or chunks. A very simple version of a volume chunking scheme applied to a cubic 

volume is shown in Figure 7.11. In this example, the number of x divisions, y divisions and z 

divisions is equal to two. 

Figure 7.11: A Cube Chunked Into Eight Subvolumes 

The algorithm for creating the volume chunks is given as: 

1. Compute the bounding box. 

2. Find x, y, and z increments based on the number of x divisions, the number of y divisions, 
and the number of z divisions. These values can be user supplied or can be computed by 
decomposing the volume based on a desired number of elements in each volume. Then 
numVolumes = x divisions * y divisions * z divisions. 
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3. Allocate the structure numElementsInVolume. 
numElementsIn Volume = new INT_lD[numVolumes]. 

4. Allocate temporary tNumElementsIn Volume for construction of numElementsIn Volume. 
tNumElementsInVolume = new ESfT_lD[numVolumes]. 

5. Cycle over all volumes and initialize tNumElementsIn Volume. 

6. Cycle over all elements i in the input grid. 

(a) Calculate the volume index (vlndex) for the first node. 

(b) Increment tNumElementsInVolumefvlndex] by one. 

7. Cycle over all volumes i and set: numElementsInVolume[i] = numElementsInVolumefi- 
1 ]+tNumElementsInV61ume[i-1 ]. 

8. Delete the memory for structure tNumElementsIn Volume. 

9. Allocate elementslnVolume. 
elementslnVolume = new INT_lD[numElements]. 

10. Cycle over all elements i in the input grid. 

(a) Calculate the volume index, vlndex, for the first node of the element i. 

(b) Set elementslnVolume[numElementsInVolume[vIndex]] = i. 

(c) Increment numElementsInVolume[vIndex] by one. 

The method of volume chunking uses the same array indexing scheme as that shown in 

the construction of elements surrounding a point. Steps 3 and 4 of the algorithm shown above 

allocate the amount of memory needed to construct the volume chunking array. This memory is 

seen to be <D(V + 1) where V is the number of subvolumes or volume chunks. Step 5 cycles 

over all of these volumes in 0(V) time. Step 6 operates in order O(N) time where N is the 

number of elements in the input grid. Step 7 operates in 0(V) time. Step 9 allocates the memory 

needed for the volume chunking structure O(N) space. Step 10 operates in O(N) time. This 

results in an overall space usage of 0(N + V) and a construction time of O(N). Given the space 

requirements for the original grid, the additional space required to build the volume chunking 

structure is an overhead of approximately 18%. This overhead falls well below any that have 

been mentioned in the schemes presented above. The volume chunking scheme easily handles 

the problem of getting lost during the traversal. The searching scheme in the next section uses 
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this volume chunking to select a good starting element to begin the search. If the traversal 

gets lost during the search, the routine cycles over all elements in a given volume. The volume 

chunking structure is specifically used to obtain a good candidate starting element in a search if 

one is not already available. It is also used to reduce the number ofpossible elements to search 

through should an embedded boundary be contained in a given volume chunk. A discussion 

and analysis of this volume chunking method for searching is presented in the next section. An 

implementation of the volume chunking is given in Appendix E. 
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Figure 7.12: An Example of Volume Chunking 

The process of finding the chunk that a given point is located in is a direct computation. 

Figure 7.12 illustrates the chunking of space that contains both a tetrahedra and a hexahedra. To 

find the chunk that the node Tl belongs to, a calculation is made to determine the x index, the y 

index, the z index, and the volume index. They are computed in the following manner: 



99 

getBoundingB ox(Min,Max); 

xlndex = (int)(((x-Min[0])/(MaxtO]-Min[0]))*numXDivisions); 

ylndex = (int)(((y-Min[l])/(Max[l]-Min[l]))*numYDivisions); 

zlndex = (int)(((z-Min[2])/(Max[2]-Min[2]))*numZDivisions); 

if (xlndex == numXDivisions) 

xlndex-; 

if (ylndex == numYDivisions) 

ylndex-; 

if (zlndex == numZDivisions) 

zlndex-; 

vlndex = xIndex*numYDivisions*numZDivisions + 

yIndex*numZDivisions + 

zlndex; 

7.2.2 Global and Local Searching Techniques 

Searching is used for a variety of reasons during the process of visualizing scientific data, but 

the primary reason for searching inside the G_ «route Server is to determine element containment 

for a given point. The searching algorithm inside the Compute Server operates in two basic 

modes, global searching and local searching. The global searching technique uses the volume 

chunking data structure and the given point to locate a good starting element. Then the local 

search is invoked. If the local search is unable to find the element containing a given point, then 

all elements within the chunk are tested to see if the point is contained within any element in the 

grid. Although this is an exhaustive search of the volume chunk, the number of elements inside 

that volume chunk is much smaller than the number of elements in the input grid. There are only 

two reasons why the local search would fail to find an element containing a given point: (1) the 

given point is outside of the volume or inside a cavity that contains no elements and (2) there 



100 

exists an embedded boundary in the volume chunk that was chosen to contain the give point. 

Presented next is the method for using volume coordinates to determine search direction and 

element containment, the base searching algorithm, and a recursive local searching algorithm. 

7.2.2.1 Using Volume Coordinates To Determine Point Containment 

The calculation of volume coordinates is used to determine point containment and the sub 

volumes that are calculated are used to determine direction of traversal. This method is based on 

that given in [50]. A full implementation is given is Appendix F. Figure 7.13 illustrates how the 

computations of the subvolume VI, V2, V3, and V4 guide the traversal through the unstructured 

grid. VI is calculated as the volume of the tetrahedra formed by the given point, P2, P3, and P4. 

If this volume is positive, then the given point is on the inside of the face formed by P2, P3, and 

P4. If it is negative, then the given point is on the outside of the face formed by P2, P3, and P4. 

If it is zero, then the given point lies on the face formed by P2, P3, and P4. V2 is calculated as 

the volume of the tetrahedra formed by the given point, PI, P4, and P3. If V2 is positive, then 

the given point lies on the inside of the face formed by PI, P4, and P3. If V2 is negative, then the 

given point lies on the outside of the face formed by PI, P4, and P3. Similar conditions apply to 

the computation of subvolumes V3, and V4. 

7.2.2.2 Searching Algorithm - 

The base searching algorithm can be stated in the following steps, and is based on the 

searching algorithm given in [50]: 

1. If a good starting element is needed, find one using the volume chunking structure. 

2. Recursively search for element containment. 

3. If the recursive search fails to find an element, then cycle over all elements in the volume 
chunk containing the given point that have not previously been visited. 

The recursive algorithm is given the point, the current element in the traversal, an array of 

flags indicating whether an element has been visited, and the current visit. This algorithm can 

be stated as: 
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 *® 

V = Calculate Volume (P1, P2, P3, P4) 
VI = Calculate Volume (P, P2, P3, P4) 
V2 = Calculate Volume (P, P1, P4, P3) 
V3 = Calculate Volume (P, P4, P1, P2) 
V4 = Calculate Volume (P, P3, P2, P1) 

if (V1 < 0.0) 
TRAVEL OUT FACE 2 
(P2, P3, P4) 

if (V2<0.0) (?) 
TRAVEL OUT FACE 3 
(P3, P4, P1) 

if (V3<0.0) 
TRAVEL OUT FACE 4 
(P4,P1,P2) 

if (V4<0.0) 
TRAVEL OUT FACE 1 
(P1.P2.P3) 

Figure 7.13: Volume Coordinates 

1. Set the visited flag for the current element e to the current visit. 

2. Calculate whether the current element contains the given point by computing subvolumes 
Vl,V2,V3,andV4. 

3. If VI > 0 and V2 > 0 and V3 > 0 and V4 > 0, then the current element contains the given 
point. Return successfully with the current element. 

4. If VI <0orV2<0orV3<0orV4<0, 

• If the volume coordinate VI is negative and element neighbor 2 is valid and not 
visited, then set the current element to element neighbor 2, and call the recursive 
search again. 

• If the volume coordinate V2 is negative and element neighbor 3 is valid and not 
visited, then set the current element to element neighbor 3, and call the recursive 
search again. 

• If the volume coordinate V3 is negative and element neighbor 4 is valid and not 
visited, then set the current element to element neighbor 4, and call the recursive 
search again. 

• If the volume coordinate V4 is negative and element neighbor 1 is valid and not 
visited, then set the current element to element neighbor 1, and call the recursive 
search again. 
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Finding an initial starting element using the volume chunking structure operates in 0(1) 

time. Given a good starting element, the recursive search to find the containing element operates 

by navigating through the number of elements between the starting element and the containing 

element, provided no embedded boundary is encountered. This would operate in a worst case 

time of C(iV1/3), where N is the number of elements in the input grid. This worst case estimate 

is based on a rectilinear three-dimensional volume that contains N elements. The diagonal 

through the volume is then given as 0(N1^3). If the recursive search should fail, then the search 

routine would operate in a worst case time of 0(nV), where nV is the number of elements 

contained in volume index V. Implementations of the searching algorithms are given in Appendix 

F. 

As is shown in the algorithm above, an element containment test is performed. If the given 

point is not contained within the candidate element, then the resulting volume coordinates are 

used to determine the direction of traversal. Completing the discussion of the searching requires 

an explanation of the computation of volume coordinates. This computation calculates the sub 

volumes VI, V2, V3, and V4. 

7.3    Cutting Planes 

Cutting planes are perhaps the most common method for extracting information from a 

volume solution. Displayed properly, it can give a variety of meanings, from the shape and 

structure of the grid at that plane, to the behavior of the solution in that plane. It is a widely 

accepted method for querying the physical properties of a solution, however, it can also be one 

of the most costly. If the original volume grid and solution are significantly large, an arbitrarily 

placed cutting plane can potentially be very large as well. Because it is very widely used, 

and because it has the potential for displaying a great deal of information at one time, it is 

important to make sure that the cutting planes are generated optimally with respect to space 

and quickly with respect to CPU performance. The following sections present a new cutting 

plane algorithm that generates a cutting plane with no duplication of intersection points and by 

avoiding redundant element visits in the grid. As the cut is generated, the knowledge of where the 
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cut has already occurred is retained to avoid unnecessary intersection calculations and to avoid 

duplicating memory by storing redundant point information. This method can handle multiple 

disjoint grids, and it can handle all previously described element types. The cutting plane is 

specified by a single point and a single normal. The algorithm proceeds as follows: 

1. Initialize all global structures and arrays needed to mark visits to elements. 

2. Find an element e containing a point that lies in the cutting plane. 

3. Intersect the plane with the element and record the intersection points and the triangles. 
At this point, we do not have to worry about duplicating points because the intersection 
routine returns a copy of the points listed exactly once. The intersection routine also 
returns information giving which element faces have been intersected. 

4. Set this element e to visited. 

5. Call the recursive cutting plane algorithm to grow the cutting plane out from element e. 

The recursive cutting plane algorithm can be stated as: 

1. If face 1 of e has been intersected and the neighbor attached to face 1 is valid and has not 
been visited, then 

(a) Calculate intersection parameters to determine whether element neighbor 1 intersects 
the plane. If the element intersects the plane, 

(b) Find the intersection points and intersecting faces of the plane with element neighbor 
1. 

(c) Record all non-duplicate points. 

(d) Record all triangles. 

(e) Set element neighbor 1 to visited. 

(f) Call the recursive cutting plane algorithm to grow the cutting plane out from element 
neighbor 1. 

2. If face 2 of e has been intersected and the neighbor attached to face 2 is valid and has not 
been visited, then 

(a) Calculate intersection parameters to determine whether element neighbor 2 intersects 
the plane. If the element intersects the plane, 

(b) Find the intersection points and intersecting faces of the plane with element neighbor 
2. 

(c) Record all non-duplicate points. 
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(d) Record all triangles. 

(e) Set element neighbor 2 to visited. 

(f) Call the recursive cutting plane algorithm to grow the cutting plane out from element 
neighbor 2. 

3. If face 3 of e has been intersected and the neighbor attached to face 3 is valid and has not 
been visited, then 

(a) Calculate intersection parameters to determine whether element neighbor 3 intersects 
the plane. If the element intersects the plane, 

(b) Find the intersection points and intersecting faces of the plane with element neighbor 
3. 

(c) Record all non-duplicate points. 

(d) Record all triangles. 

(e) Set element neighbor 3 to visited. 

(f) Call the recursive cutting plane algorithm to grow the cutting plane out from element 
neighbor 3. 

4. If face 4 of e has been intersected and the neighbor attached to face 4 is valid and has not 
been visited, then 

(a) Calculate intersection parameters to determine whether element neighbor 4 intersects 
the plane. If the element intersects the plane, 

(b) Find the intersection points and intersecting faces of the plane with element neighbor 
4. 

(c) Record all non-duplicate points. 

(d) Pr.jord all triangles. 

(e) Set element neighbor 4 to visited. 

(f) Call the recursive cutting plane algorithm to grow the cutting plane out from element 
neighbor 4. 

This cutting plane algorithm produces a plane that has a minimal representation of points 

given the resulting triangulation. The algorithm operates in worst case O(P) time, where P is 

the total number of elements in each volume chunk that is intersected by the cutting plane. An 

implementation of the cutting plane algorithm is given in Appendix G. 

An example of how the algorithm travels from one face to the next is given in Figure 7.14. 

The tetrahedra, El, formed from the points PI, P2, P3, and P4 shares a face with the tetrahedra, 

E2, formed from the points PI, P2, P3, and P5. El is intersected with the cutting plane resulting 
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in the intersection points II, 12,13, and 14. The intersection routine flags face 1 as having been cut 

and the traversal carries out through face 1 into element E2. E2 returns an additional intersection 

point of 15, recognizing the duplicates II and 12. 

E1: II, 12,13,14 
E2:I5 

Figure 7.14: An Example of the Cutting of Neighboring Elements 

7.4 Isosurfaces 

Although this research is not specifically concerned with data structures for explicit 

isosurface creation, the methods used to create the cutting plane with no duplicate points can 

be extended to handle isosurface creation with no duplicate points. The creation of an isosurface 

is quite similar to the creation of a cutting plane. The volume chunking can also be extended 

to contains elements in chunks based on function values as opposed to spatial location. The 

memory overhead and timings are exactly the same as that for volume chunking and the cutting 

plane algorithms already presented. 

7.5   Summary 

A set of data structures and algorithms has been presented which operate well on large scale 

unstructured scientific data. These algorithms and data structures are implemented within the 
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confines of a framework called the Compute Server. It is now prudent to summarize the analysis 

of the new algorithms that have been presented and to provide performance examples. 

A new method for searching through an unstructured volume has been presented. When the 

input data is brought into the system, an additional structure is imposed on this data called a 

volume chunking structure. This structure is used to avoid an exhaustive search of the volume 

when search methods fail due to the presence of embedded boundaries.  The search method 

consults the volume chunking structure only when a good candidate element is needed and 

not already known.   Once the volume chunking structure returns a good candidate element, 

the search navigates through the volume using a local search. If the local search fails due to 

an embedded boundary in the volume chunk in which the point is contained, the search will 

traverse brute force through all elements in the selected volume chunk. The overhead for this 

volume chunking structure is less than 18%. The overhead is computed by dividing the amount 

of memory needed for the volume chunking structure by the memory that is allocated for the 

input data.   The worst case performance for a search is 0(V), where V is the number of. 

elements contained in the volume chunk selected. V is typically much less than the number of 

elements in the entire volume, thus improving significantly the exhaustive search needed when an 

embedded boundary is encountered. An average search time for the new method is 0{N1l3). As 

a comparison, a brute force method for navigating through the volume results in a time estimate 

of 0{N), where N is the number of elements in the volume. It has no overhead. A local area 

search with an element neighbor map, like that used in Field Encapsulation Library [47], has 

an average traversal of 0(N1^3) and a worst case traversal time of O(N), with no overhead. 

The octrees presented by Wilhelms and van Gelder [54] have an impressive search time of 

0{K + Klog(N/K)), where K is the number of active elements and N is the total number 

of elements in the volume. However, the overhead is approximately 20%, and the method is 

unable to handle embedded boundaries and unstructured data sets. A method using k-d trees by 

Livnat, et al. [55], has a search time of Ö(y/N + K), where K is the number of active elements 

and N is the total number of elements in the volume. An extension to the k-d trees, interval trees, 
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presented by Cignoni, et al. [57], has a search time of C(log N + K), where K is the number of 

active elements The overhead for both of these structures is > 25% and can be much larger than 

25%. An example of three different size data sets is shown in Table 7.2. The Fighter is a swept 

wing fighter notional geometry from McDonnel Douglas. The X-38 is a geometry for the NASA 

escape pod for the international space station, and the Minita is a notional tilt-rotor geometry. 

Table 7.2: Example Data Sets For Timing Algorithms 

Fighter 
Nodes 
64,924 

Triangles 
24,322 

Tetrahedra 
349,018 

Pyramids 
0 

Prisms 
0 

X-38 335,274 41,786 1,943,483 0 0 

Minita 4,806,397 462,872 7,439,997 34,517 6,875,063 

Timing results for the modified searching algorithm discussed above are shown in Table 

7.3. All timings were performed on a Silicon Graphics Octane MXE with a 300 MHz R12000 

processor and 2 GBytes of main memory. Three separate methods for searching were timed. The 

method labeled Brute Force indicates an exhaustive search through the entire volume given an 

instance where an embedded boundary becomes an obstacle. The column labeled Traditional 

Searching reveals timings for a method that starts with element 0 and proceeds to navigate 

through the volume with local search techniques until an embedded Do'.indary is encountered. 

The method then performs an exhaustive search through all elements in the volume that have 

not previously been visited. The column labeled Modified Searching shows the timings for the 

new searching algorithm that has been developed as a result of this research. These timings 

are encouraging. The modified searching technique appears to remain relatively constant in the 

amount of time it requires to find the desired element regardless of the size of the volume. Both 

brute force and traditional searching techniques show a significant increase in the amount of time 

required when the size of the data increases dramatically. The overhead also appears to become 

less significant as the size of the data grows. 
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Table 7.3: Timing Results For Modified Searching Algorithm (in CPU seconds) 

Brute Force 
Searching 

Traditional 
Searching 

Modified 
Searching 

Size of 
Grid 

Size of 
Overhead 

% 
Overhead 

Fighter 0.63 0.56 0.03 8.83 MB 1.40 MB 15.8 

X-38 3.49 3.25 0.024 47.42 MB - 7.78 MB 16.4 

Minita 46.96 13.33 0.04 463.04 MB 
 4  

57.40 MB 12.4 

A new cutting plane algorithm has been presented that creates an arbitrary cutting plane with 

an optimal number of points given the default triangulation. This default triangulation refers 

to the set of triangles that result from cutting the elements without any compression techniques 

applied to the triangulation. The new method for calculating an arbitrary cutting plane operates 

in 0{P) time, where P is the number of elements contained in each of the volume chunks that 

intersect the cutting plane. Given a judicious choice for the number of volume chunks, V, P 

can be seen to be C(iV2/3). It can also be shown that eliminating duplicate points from the 

cutting plane will result in a maximum of 0(6) compression. Because we are dealing with 

volumes generated for the purposes of computational fluid dynamics, we can be assured that 

there exists reasonable quality in the grids. This reasonable quality equates to an arbitrary cut 

that has an average of 6 elements surrounding each point. This is because the distributions of 

the angles in the surface grid are between 50° to 70°. An ^>erage angle of 60° results in 6 

elements surrounding a given point. With an average of 6 elements surrounding each point, we 

can easily see that each point could be represented 6 times for each triangle. With elimination 

of duplicate points, we can see that a maximum compression of 0(6) is achieved. FEPLOT3D 

[61] operates in O(N) time and has a duplicate point representation. The cutting plane algorithm 

in FAST [48] operates in a similar 0{N) time with duplicate points. The Field Encapsulation 

Library [47] operates in 0{N2/3) time with a duplication of points. Timing results for the 

modified cutting plane algorithm discussed above are shown in Table 7.4. These timings show 

a speed performance improvement of 3 to 4 times over traditional cutting plane algorithms. The 

traditional cutting plane algorithms refer to those that visit every element in the volume and do 
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not exploit coherency through the use of an element neighbor map. As expected through the 

complexity analysis, the compression is seen to be in the range of 5 to 6 times that of traditional 

methods. Again, these methods appear to scale well with the problem size. 

Table 7.4: Timing Results For Modified Cutting Plane Algorithm (in CPU seconds) 

Traditional 
Cutting 

Modified 
Cutting 

Speedup Compression 

Fighter 0.68 
25422 Points 

0.18 
5062 Points 

3.78X 5.02X 

X-38 3.59 
117798 Points 

0.87 
21253 Points 

4.13X 5.54X 

Minita 29.09 
353721 Points 

6.96 
66116 Points 

4.18X 5.35X 

Analysis of these data structures and algorithms has been presented, and a justification for 

the means of implementation has been discussed. The next chapter provides a summary of the 

information that has been presented in this research. 



CHAPTER VIII 

RESULTS AND CONCLUSIONS 

8.1    Results 

The results of this research are culminated in the development of a set of algorithms and 

the generation of an animation depicting the separation of a single booster from the delta II 

configuration. What follows is an overview of the animation procedures that were used to 

generate an unsteady animation of this event and an explanation of each segment of the resulting 

movie. 

8.1.1 Animation Procedures 

Each frame of the animation was generated through a batch version of the DIVA software 

and was rendered using a modified version of POVRAY [62]. The frames were generated on both 

a Sun Enterprise 10000 (El0000) with 64 processors each containing 2GB of main memory and 

a Sun Cluster with 64 processors each containing 2 GB of main memory. The segments were 

produced independent of each other and were run in parallel on the El0000 or the Cluster. Tae 

solution originally produced 1180 data sets, however the animation was generated by ssi^ifng 

every fourth data set resulting in 297 frames for the movie. The movie contains 4 segments of 

unsteady information and 3 segments of static information. The 4 unsteady segments contain 

297 frames each, making the total animation contain 1191 frames. Each frame was ray traced 

on either the El0000 or the Cluster and required approximately 5 minutes - 1 hour to render. 

The unsteady segments were run in parallel on either the E10000 or the Sun Cluster using 32 

processors at a time. 
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8.1.2   Storyboard for the movie 

An initial storyboard was planned out to try to depict the movement and behavior of the 

tumbling booster over the 297 time steps. The final animation was divided into eight segments, 

and was designed to portray the behavior and the movement of the tumbling booster in the most 

informative manner. Each of the individual sections is described in the following paragraphs. 

8.1.2.1 Full delta II viscous configuration 

A viscous solution of the full delta II configuration was generated to serve as a frame of 

reference for the problem. Initially, the animation begins with a view of the delta II with contours 

of density from a viscous solution plotted on the body itself. The image that is in the movie is 

shown in Figure 8.1. 

8.1.2.2 Close-Up of booster separating from full delta II viscous configuration 

The viewer is then shown a close up of on the boosters that is beginning to separate from the 

full configuration. This image is shown in Figure 8.2. 

8.1.2.3 Overall tumbling trajectory of booster separation 

An overall view of the trajectory of the tumbling booster is shown in Figure 8.3. This is 

given to orient the viewer to the overall motion and path that the booster travels from separation 

to the end of the simulation. The initial frame is at the top of the figure and the final frame is 

given at the bottom right of the figure. The figure contains 99 of the frames that were used to 

generate the animation. 

8.1.2.4 Animation of density contour on normal cut from rigid pole camera view point 

The first unsteady sequence of the movie shows density contours on a cutting plane normal 

to the booster. During the sequence, each plane is calculated in the same location relative to the 

booster as it is tumbling. The camera is placed at an initial position some distance away in the z 

direction. During the animation, the camera remains attached to the body as if it were attached 

by a rigid pole. When the booster rolls, the camera rolls with it. Figure 8.4 shows the initial 
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frame of the animation at time t=0s. The density contours are plotted with a minimum value of 

0.0 and a maximum value of 1.7. The image shown is Figure 8.5 shows the booster in this same 

animation sequence at time t=21.8s. The image shown is Figure 8.6 shows the booster in this 

same animation sequence at time t=29.5s. 

8.1.2.5 Animation of density contour on normal cut from dynamic xy camera view point 

The second unsteady sequence of the movie shows density contours on a cutting plane 

normal to the booster. During the sequence, each plane is calculated in the same location relative 

to the booster as it is tumbling. The camera is placed at an initial position some distance away 

in the z direction. During the animation, the camera remains moves in the x and y directions 

with the body, but remains fixed in the z. This means that the distance in x and y that the booster 

travels, the camera does also. However, if the booster rolls toward the camera (moves toward 

that camera), then the booster appears to get larger. If the booster rolls away from the camera, 

then the booster appears to get smaller. Figure 8.7 shows the initial frame of the animation at 

time t=0s. The density contours are plotted with a minimum value of 0.0 and a maximum value 

of 1.7. The image shown is Figure 8.8 shows the booster in this same animation sequence at 

time t=21.8s. The image shown is Figure 8.9 shows the booster in this same animation sequence 

at time t=29.5s. 

8.1.2.6 Animation of density contours on two normal cut from dynamic xy camera view point 

The third unsteady sequence of the movie shows density contours on two cutting planes 

normal to the booster. During the sequence, each plane is calculated in the same location relative 

to the booster as it is tumbling. The camera is placed at an initial position some distance away 

in the z direction. During the animation, the camera remains moves in the x and y directions 

with the body, but remains fixed in the z. The cuts are made opaque or transparent based on the 

dot product of the view vector with the normal to the cutting plane. The view vector is defined 

as the vector that is generated from the position that the camera is looking at minus the position 

on which the camera is physically located. The cuts are rendered completely transparent if the 
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normal to the cut is orthogonal to the view vector (the dot product of the normal to the cut and 

the view vector is 0.0). The cut is rendered as completely opaque if the dot product of the normal 

to the cut with the view vector is 1.0. A linear variation is used for any value between 0.0 and 

1.0. This sequence allows the user to always have a full view of the solution parameters while 

maintaining the view of the full motion. The first unsteady sequence allowed for a full view 

of the solution, but did not allow for an accurate view of the full motion. The second sequence 

sacrificed the full view of the solution to allow the user to see an accurate view of the full motion. 

Figure 8.10 shows the initial frame of the animation at time t=0s. Again, the density contours are 

plotted with a minimum value of 0.0 and a maximum value of 1.7. The image shown is Figure 

8.11 shows the booster in this same animation sequence at time t=21.8s. The image shown is 

Figure 8.12 shows the booster in this same animation sequence at time t=29.5s. 

8.1.2.1 Animation of isosurfaces of two density values from dynamic xy camera view point 

The final unsteady sequence of the movie shows time varying isosurfaces on the volume 

solution of the tumbling booster that grow and shrink over time. The isosurfaces are generated 

from density values at 0.45 and 1.35. The isosurface shown in magenta is density=1.35 and 

the isosurface shown in blue is density=0.45. The camera is placed at an initial position some 

distance away in the z direction. During the animation, the camera remains moves in the x and 

y directions with the body, but remains fixed in the z. Figure 8.13 shows the initial frame of 

the animation at time t=0s. The image shown is Figure 8.14 shows the booster in this same 

animation sequence at time t=21.8s. The image shown is Figure 8.15 shows the booster in this 

same animation sequence at time t=29.5s. 

8.2    Conclusions 

Visualizing the results from large scale unstructured unsteady simulations is an interesting 

and creative process. Several areas of research were brought together to develop both the 

algorithms and the resulting animation. These areas include grid generation for both static and 
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dynamically changing grids, parallel unsteady solution methods, and visualization techniques 

for extracting and rendering high quality animations. 

Fortunately, the results of this research, were developed as a result of working closely 

in a multi-disciplinary team environment. This has enabled individuals from a variety of 

backgrounds to have not only theoretical input, but to have technical say in the outcome of 

the present work. 
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Figure 8.1: Viscous solution of the Delta II and the boosters 
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Figure 8.2: Viscous solution of one of the separating boosters from the Deltall 
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Figure 8.3: Overall trajectory of booster tumbling from a fixed viewpoint 
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Figure 8.4: Density contour on cut through booster with rigid pole view at time t=0s. 
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Figure 8.5: Density contour on cut through booster with rigid pole view at time t=21.8s. 
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Figure 8.6: Density contour on cut through booster with rigid pole view at time t=29.5s. 



Figure 8.7: Contour on cut through booster with dynamic x,y static z view at time t=0.0s 
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Figure 8.8: Contour on cut through booster with dynamic x,y static z view at time t=21.8s 
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Figure 8.9: Contour on cut through booster with dynamic x,y static z view at time t=29.5s 
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Figure 8.10: Contour on cuts through booster with dynamic x,y static z view at time t=0.0s 



Figure 8.11: Contour on cuts through booster with dynamic x,y static z view at time t=21.8s 
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Figure 8.12: Contour on cuts through booster with dynamic x,y static z view at time t=29.5s 



Figure 8.13: Isosurfaces of density on booster with dynamic x,y static z view at time t=0.0s 
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Figure 8.14: Isosurfaces of density on booster with dynamic x,y static z view at time t=21.8s 
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Figure 8.15: Isosurfaces of density on booster with dynamic x,y static z view at time t=29.5s 
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The DIVA visualization system is capable of handling structured multi-block, unstructured 

tetrahedral, and unstructured mixed element grids. The file readers associated with the DIVA 

visualization system key off of a suffix appended to the end of the grid file name. A structured 

multi-block grid has the suffix .sgrid, an unstructured tetrahedral grid has the suffix .fgrid, and 

an unstructured mixed element grid has the suffix .ugrid. 

Structured Multi-block 

The format for a structured multi-block grid is as follows: 

NumBlocks 

for i = 1 to NumBlocks, read in NumI, NumJ, NumK Dimensions for Block i 

for i = 1 to NumBlocks, for j = 1 to NumI*NumJ*NumK, read X,Y,Z 

Unstructured Tetrahedral 

The format for an unstructured tetrahedral grid is as follows: 

NumNodes, NumSurfTriangles, NumVolTets 

for i = 1 to NumNodes, read in all X Coordinates 

for i = 1 to NumNodes, read in all Y Coordinates 

for i = 1 to NumNodes, read in all Z Coordinates 

for i = 1 to NumSurfTriangles, read in three indices into coordinates 

for i = 1 to NumSurfTriangles, read in boundary condition for triangle i 

for i = 1 to NumVolTets, read in four indices into coordinates 
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Unstructured Mixed Element 

The format for an unstructured mixed element grid is as follows: 

NumNodes, NumSurfTriangles, NumSurfQuads, 

NumVolTets, NumVolPents5, NumVolPentsö, NumVolHexs 

to NumNodes, reafi in all X Coordinates 

to NumNodes, read in all Y Coordinates 

to NumNodes, read in all Z Coordinates 

to NumSurfTriangles, read in three indices into coordinates 

to NumSurfQuads, read in four indices into coordinates 

to NumSurfTriangles+NumSurfQuads, read in boundary condition for surface i 

to NumVolTets, read in four indices into coordinates 

to NumVolPents"5, read in five indices into coordinates 

to NumVolPentsö, read in six indices into coordinates 

to NumVolHexs, read in eight indices into coordinates 

for i = 1 

for i = 1 

for i = 1 

for i = 1 

for i = 1 

for i = 1 

for i = 1 

for i = 1 

for i = 1 

for i = 1 
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The DIVA visualization system is capable of handling the standard Q file, the incompressible 

Q file, and the function file formats for solution input. The file readers associated with the 

DIVA visualization system key off of a suffix appended to the end of the solution file name. A 

structured multi-block standard Q file has the suffix .sfiow, an unstructured tetrahedral standard 

Q file has the suffix .fflow, and an unstructured n.iAed element standard Q file has the suffix 

.uflow. A structured multi-block incompressible Q file has the suffix .zflow. A structured multi- 

block function file has the suffix .sfunc, an unstructured tetrahedral function file has the suffix 

.ffunc or .unfunc. 

Structured Multi-block Standard Q File 

The format for a structured multi-block standard Q file is as follows: 

NumB locks 

for i = 1 to NumBlocks, read in NumI, NumJ, NumK Dimensions for Block i 

for i = 1 to NumBlocks, 

read four doubles RefMach, Alpha, RefReynolds, Time 

for j = 1 to NumI*NumJ*NumK, 

read all block i's density values 

read all block i's density*u velocity values 

read all block i's density*v velocity values 

read all block i's density*w velocity values 

read all block i's energy values 
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Unstructured Standard Q File 

The format for a unstructured standard Q file is as follows: 

NumNodes, NumJNodes, NumKNodes 

read four doubles RefMach, Alpha, RefReynolds, Time 

for i = 1 to NumNodes, 

read all node i's density values 

read all node i's density*u velocity values 

read all node i's density*v velocity values 

read all node i's density*w velocity values 

read all node i's energy values 

Structured Multi-block Incompressible Q File 

The format for a structured multi-block incompressible Q file is as follows: 

NumB locks 

for i = 1 to NumBlocks, read in NumI, NumJ, NumK Dimensions for Block i 

for i = 1 to NumBlocks, 

read four doubles RefMach, Alpha, RefReynolds, Time 

for j = 1 to NumI*NumJ*NumK, 

read all block i's Ql values 

read all block i's u velocity values 

read all block i's v velocity values 

read all block i's w velocity values 

read all block i's Q5 values 
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Structured Multi-block Function File 

The format for a structured multi-block function file is as follows: 

NumFunctions,NumBlocks 

for i = 1 to NumFunctions, read in whether function is scalar 1 or vector 0 

for i = 1 to NumBlneks, read in NumI, NumJ, NumK Dimensions for Block i 

for i = 1 to NumFunctions, 

for j = 1 to NumB locks, 

for k = 1 to NumFNumPNumK for block j, 

if the function is a vector, read three values 

if the function is a scalar, read one value 

Unstructured Function File 

The format for an unstructured function file is as follows: 

NumFunctions, 

for i = 1 to NumFunctions, 

read NumFunctionNodes, NumJNodes, NumKNodes, FunctionFlag for function i 

for i = 1 to NumB'cscks.read in NumI, NumJ, NumK Dimensions for Block i 

for i = 1 to NumFunctions, 

for j = 1 to NumFunctionNodes for function i 

if the function is a vector, read three values 

if the function is a scalar, read one value 
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int i = 0 
int j = 0 
int plndex = 0 
int elndex = 0 
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void elementsSurroundingPoint( void) 

{ 
// i is a counting variable. 
// j is a counting variable. 
// plndex is a variable used to store a point index. 
// elndex is a variable used to store an element index. 

INT.1D *tNESP =NULL; //tNESP is a temporary array for constructing nESP. 
INT_1D *nESP   =NULL; //nESP contains information for number of elements 

// surrounding a point. 
INT-ID *eSP      =NULL; //eSP contains the specific elements surrounding each points. 

nESP = new INT_lD[numberOfNodes+l];   // Allocate memory for actual array. 
tNESP = new INT_lD[numberOfNodes+l]; // Allocate memory for temporary array, 
for (i = 0; i <= numberOfNodes; i++) // For i cycles over all nodes in grid plus one. 

{ 
tNESPfi] = 0; // Initialize temporary array to contain zeros. 
nESP[i] = 0; // Initialize actual array to contain zeros. 

} // End cycle over all nodes in grid plus one. 

for (i = 0; i < numTetrahedra; i++)  // For i cycles over all tetrahedra in the grid. 

{ 
- for (j = 0; j < 4; j++) // For j cycles over all nodes in tetrahedra i. 

{ 
plndex = tetrahedra[i][j];    // Dereference the node index. 
tNESP[pIndex]++; // Increment this nodes number of elements by one. 

} // End cycle j over all nodes in tetrahedra i. 
} // End cycle i over all tetrahedra in the grid. 

for (i = 0; i < numPents5; i++)   // For i cycles over all five noded pents in the grid. 

{ 
for (j = 0; j < 5; j++) // For j cycles over all nodes in five noded pent i. 

{ 
plndex = pents5[i][j];    // Dereference the node index. 
tNESP[pIndex]++;        // Increment this nodes number of elements by one. 

} // End cycle j over all nodes in five noded pent i. 
} // End cycle i over all five noded pents in the grid. 

for (i = 0; i < numPentsö; i++)   // For i cycles over all six noded pents in the grid. 

{ 
for (j = 0; j < 6; j++) // For j cycles over all nodes in six noded pent i. 

{ 
plndex = pents6[i][j];    //Dereference the node index. 
tNESP[pIndex]++;        // Increment this nodes number of elements by one. 

} // End cycle j over all nodes in six noded pent i. 
} // End cycle over all six noded pents in the grid. 
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for (i = 0; i < numHexahedra; i++) // For i cycles over all hexahedra in the grid. 

{ 
for (j = 0; j < 8; j++) // For j cycles over all nodes in the hexahedra i. 

{ 
plndex = hexahedra[i][j]; // Dereference the node index. 
tNESP[pIndex]++; // Increment this nodes number of elements by one. 

} // End cycle j over all nodes in hexahedra i. 
// End cycle over all hexahedra in the grid. 

for (i = 1; i <= numberOfNodes; i++)   // For i cycles over all nodes plus one starting 
// at one. 

nESP[i] = nESP[i-l] + tNESP[i-l]; // Increment nESP[i] to indicate all elements 
// surrounding a point up to that point, 

deletef] tNESP; // Deallocate the memory needed for this 
// temporary variable. 

eSP = new INT_lD[nESP[numberOfNodes]]; // Allocate the memory for actual element 
// indices. 

for (i = 0; i < numTetrahedra; i++)        // For i cycles over all tetrahedra in the grid. 

{ 
for (j = 0; j < 4; j++) // For j cycles over all nodes in tetrahedra i. 

{ 
plndex = tetrahedra[i][j]; // Dereference the node index. 
elndex = nESP[pIndex]; // Dereference the current element index. 
eSP[eIndex] = tetlndex+i; // Add this element to the list surrounding node 

// plndex. 
nESP[pIndex]++; // Increment this nodes number of elements by one. 

} // End cycle j over all nodes in tetrahedra i. 
} // End cycle i over all tetrahedra in the grid. 

for (i = 0; i < numPents5; i++) // For i cycles over all five noded pents in the grid. 

{ 
for (j = 0; j < 5; j++) // For j cycles over all nodes in five noded pent i. 

{ 
plndex = pents5 [i] [j]; // Dereference the node index. 
elndex = nESP[pIndex]; // Dereference the current element index. 
eSPfelndex] = pents5Index+i;  // Add this element to the list surrounding node 

// plndex. 
nESP[pIndex]++; // Increment this nodes number of elements by one. 

} // End cycle j over all nodes in five noded pents i. 
} // End cycle i over all five noded pents in the grid. 
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for (i = 0; i < numPentsö; i++) 

{ 
for (j = 0; j < 6; j++) 

{ 
plndex = pents6[i][j]; 
elndex = nESP[pIndex]; 
eSPfelndex] = pents6Index+i; 

nESP[p!ndex]++; 

} 

// For i cycles over all six noded pents in the grid. 

// For j cycles over all nodes in six noded pent i. 

// Dereference the node index. 
// Dereference the current element index. 
// Add this element to the list surrounding node 
// plndex. 
// Increment this nodes number of elements by one. 
// End cycle j over all nodes in six noded pents i. 
// End cycle i over all six noded pents in the grid. 

for (i = 0; i < numHexahedra; i++) 

{ 
for(j=0;j<8;j++) 

{ 
plndex = hexahedra[i][j]; 
elndex = nESP[pIndex]; 
eSPfelndex] = hexlndex+i; 

nESP[p!ndex]++; 

// For i cycles over all hexahedra in the grid. 

// For j cycles over all nodes in hexahedra i. 

// Dereference the node index. 
// Dereference the current element index. 
// Add this element to the list surrounding node 
// plndex. 
// Increment this nodes number of elements by one. 
// End cycle j over all nodes in hexahedra i. 
// End cycle i over all hexahedra in the grid. 
// End compute elements surrounding point. 
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int i = 0 
int j = 0 
int Pl = 0 
int p2 = 0 
int p3 = 0 
int p4 = 0 
int p5 = 0 
int p6 = 0 
int ne = 0 
int nf = 0 
int ge = 0 

void buiIdElementNeighborMap( void) 

{ 
// i is a counting variable. 
//j is a counting variable. 
// pl is used as a node index. 
// p2 is used as a node index. 
// p3 is used as a node index. 
// p4 is used as a node index. 
// p5 is used as a node index. 
// p6 is used as a node index. 
// ne is used as a holder for a matching element. 
// nf is used as a holder for a matching face. 
// ge is used to hold the global element index. 

INT_6D *eN= NULL; // eN is the array containing explicit element neighbor information. 

eN = new INT_6D[numElements]; // Allocate memory for the element neighbor array. 

for (i = 0; i < numElements; i++)    // For i cycles over all elements in the grid. 

{ 
eN[i][0] = -555; // Initialize the neighbor in position 0 to value indicating not visited. 
eN[i][l] = -555; // Initialize the neighbor in position 1 to value indicating not visited. 
eN[i][2] = -555; // Initialize the neighbor in position 2 to value indicating not visited. 
eN[i][3] = -555; // Initialize the neighbor in position 3 to value indicating not visited. 
eN[i][4] = -555; // Initialize the neighbor in position 4 to value indicating not visited. 
eN[i][5] = -555; // Initialize the neighbor in position 5 to value indicating not visited. 

} 

for (i = 0; i < numTetrahedra; i++)   // For i cycles over all tetrahedra in the grid. 

{ 
pl = tetrahedra[i][0]; // pl contains an index to node 1 of tetrahedra l. 
p2 = tetrahedrafi] [ 1 ]; // p2 contains an index to node 2 of tetrahedra i. 
p3 = tetrahedra[i][2]; // p3 contains an index to node 3 of tetrahedra i. 
p4 = tetrahedrafi] [3]; // p4 contains an index to node 4 of tetrahedra i. 
ge = tetlndex+i; // ge contains the global element index. 

if (eN[ge][0] == -555)    // If neighbor 1 for tetrahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 1 of the tetrahedra. 
commonElement(ge,p 1 ,p2,p3 ,&ne,&nf); 
eN[ge] [0] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 1 for tetrahedra i has not been visited. 



147 

if (eN[ge][l] == -555)     // If neighbor 2 for tetrahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 2 of the tetrahedra. 
commonElement(ge,p2,p3,p4,&ne,&nf); 
eN[ge][l] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 2 for tetrahedra i has not been visited. 

if (eN[ge] [2] == -555)    // If neighbor 3 for tetrahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 3 of the tetrahedra. 
commonElement(ge,p3,p4,pl ,&ne,&nf); 
eN[ge] [2] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 3 for tetrahedra i has not been visited, 
if (eN[ge][3] == -555)     // If neighbor 4 for tetrahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 4 of the tetrahedra. 
commonElement(ge,p4,p2,pl,&ne,&nf); 
eN[ge] [3] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 4 for tetrahedra i has not been visited. 

} // End for i cycles over all tetrahedra in the grid. 
for (i = 0; i < numPents5; i++) // For i cycles over all five noded pents in the grid. 

{ 
pi =pents5[i][0] 
p2 = pents5[i][l] 
p3 = pents5[i][2] 
p4 = pents5[i][3] 
p5 = pents5[i][4] 

// pi contains an index to rr: je 1 of five noded pent i 
// p2 contains an index to !? ode 2 of five noded pent i 
// p3 contains an index to node 3 of five noded pent i 
// p4 contains an index to node 4 of five noded pent i 
// p5 contains an index to node 5 of five noded pent i 

ge = pents5Index+i;    // ge contains the global element index. 

if (eN[ge][0] == -555) // If neighbor 1 for five noded pent i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 1 of the five noded pent. 
commonElement(ge,p 1 ,p2,p3 ,&ne,&nf); 
eN[ge] [0] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne] [nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 1 for five noded pent i has not been visited. 
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if (eN[ge][l] == -555)    // If neighbor 2 for five noded pent i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 2 of the five noded pent. 
commonElement(ge,p2,p5 ,p3 ,&ne,&nf); 
eN[ge][l] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the informat'on for the neighbor also. 
} // End if neighbor 2 for five noded pent i has not been visited, 
if (eN[ge][2] == -555)     // If neighbor 3 for five noded pent i has not been visited. 

{ 
// Find the neighbor element and face for neighbor 3 of the five noded pent. 
commonElement(ge,p5 ,p4,p3 ,&ne,&nf); 
eN[ge][2] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} //End if neighbor 3 for five noded pent i has not been visited. 

if (eN[ge][3] == -555)     // If neighbor 4 for five noded pent i has not been visited. 

{ 
// Find the neighbor element and face for neighbor 4 of the five noded pent. 
commonElement(ge,p3 ,p4,p 1 ,&ne,&nf); 
eN[ge][3] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 3 for five noded pent i has not been visited, 
if (eN[ge][4] == -555)     // If neighbor 5 for five noded pent i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 5 of the five noded pent. 
commonEIement(ge,pl ,p4,p5,p2,&ne ,&nf); 
eN[ge][4] = ne;        // Record the ir.f jrmation in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 5 for five noded pent i has not been visited. 

} // End for i cycles over all five noded pent in the grid. 
for (i = 0; i < numPentsö; i++) // For i cycles over all six noded pents in the grid. 

{ 
pi =pents6[i][0] 
p2 = pents6[i][l] 
p3 = pents6[i][2] 
p4 = pents6[i][3] 
p5 = pents6[i][4] 
p6 = pents6[i][5] 

//pi contains an index to node 1 of six noded pent 
// p2 contains an index to node 2 of six noded pent 
// p3 contains an index to node 3 of six noded pent 
// p4 contains an index to node 4 of six noded pent 
// p5 contains an index to node 5 of six noded pent 
// p6 contains an index to node 6 of six noded pent 

ge = pents6Index+i;    // ge contains the global element index. 
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if (eN[ge][0] == -555)    // If neighbor 1 for six noded pent i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 1 of the six noded pent. 
commonElement(ge,pl,p2,p3,&ne,&nf); 
eN[ge] [0] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 1 for six noded pent i has not been visited, 
if (eN[ge][l] == -555)     // If neighbor 2 for six noded pent i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 2 of the six noded pent. 
commonEIement(ge,p2,p3,p6,p5,&ne,&nf); 
eN[ge][l] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 2 for six noded pent i has not been visited, 
if (eN[ge][2] == -555)     // If neighbor 3 for six noded pent i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 3 of the six noded pent. 
commonElement(ge,p4,p6,p5,&ne,&nf); 
eN[ge][2] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 3 for six noded pent i has not been visited. 

if (eN[ge] [3] == -555)     // If neighbor 4 for six noded pent i has not been vi sited, 

{ 
// Find the neighbor element and face for neighbor 4 of the six noded pent. 
commonElement(ge,p4,pl,p3,p6,&ne,&nf); 
eN[ge][3] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 3 for six noded pent i has not been visited, 
if (eN[ge][4] == -555)     // If neighbor 5 for six noded pent i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 5 of the six noded pent. 
commonEIement(ge,p2,p 1 ,p4,p5 ,&ne,&nf); 
eN[ge] [4] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 5 for six noded pent i has not been visited. 

// End for i cycles over all six noded pent in the grid. 
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for (i = 0; i < numHexahedra; i++) // For i cycles over all hexahedra in the grid. 

{ 
// pi contains an index to node 1 of hexahedra i. 
// p2 contains an index to node 2 of hexahedra i. 
// p3 contains an index to node 3 of hexahedra i. 
// p4 contains an index to node 4 of hexahedra i. 
// p5 contains an index to node 5 of hexahedra i. 
// p6 contains an index to node 6 of hexahedra i. 
// p7 contains an index to node 7 of hexahedra i. 
// p8 contains an index to node 8 of hexahedra i. 

pi = hexahedra[i][0] 
p2 = hexahedra[i][l] 
p3 = hexahedra[i][2] 
p4 = hexahedra[i][3] 
p5 = hexahedra[il[^] 
p6 = hexahedra[i][5] 
p7 = hexahedra[i][6] 
p8 = hexahedra[i][7] 
ge = hexlndex+i; // ge contains the global element index. 

if (eN[ge][0] == -555)     // If neighbor 1 for hexahedra i has not been visited. 

{ 
// Find the neighbor element and face for neighbor 1 of the hexahedra. 
commonEIement(ge,pl,p2,p3,p4,&ne,&nf); 
eN[ge][0] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 1 for hexahedra i has not been visited, 
if (eN[ge][l] == -555)     // If neighbor 2 for hexahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 2 of the hexahedra. 
commonEIement(ge,p3,p7,p6,p2,&ne,&nf); 
eN[ge] [ 1 ] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 2 for hexahedra i has not been visited, 
if (eN[ge] [2] == -555)     // If neighbor 3 for hexahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 3 of the hexahedra. 
commonEIement(ge,p6,p5,p8,p7,&ne,&nf); 
eN[ge][2] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 3 for hexahedra i has not been visited. 

if (eN[ge][3] == -555)    // If neighbor 4 for hexahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 4 of the hexahedra. 
commonElement(ge,pl,p4,p8,p5,&ne,&nf); 
eN[ge][3] = ne;        // Record the information in the element neighbor array, 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 3 for hexahedra i has not been visited. 
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if (eN[ge][4] == -555)    // If neighbor 5 for hexahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 5 of the hexahedra. 
commonElement(ge,p4,p3 ,p7 ,p8 ,&ne,&nf); 
eN[ge][4] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 5 for hexahedra i has not been visited, 
if (eN[ge] [5] == -555)    // If neighbor 6 for hexahedra i has not been visited, 

{ 
// Find the neighbor element and face for neighbor 6 of the hexahedra. 
commonElement(ge,pl,p5,p6,p2,&ne,&nf); 
eN[ge][5] = ne;        // Record the information in the element neighbor array. 
if (ne != -999) // If the neighbor element indicates an actual face, 

eN[ne][nf] = ge; // Save the information for the neighbor also. 
} // End if neighbor 6 for hexahedra i has not been visited. 

// End for i cycles over all hexahedra in the grid. 
// End buildElementNeighborMap. 

void commonElement( int insideThisElement, // The global id for the element we are inside. 
int pi, // The first point index for the face we want to match, 
int p2, // The second point index for the face we want to match, 
int p3, // The third point index for the face we want to match, 
int *neighborElement, // Returns the matching element id. 
int *neighborElementFace) // Returns the matching face id. 

{ 
if (nESP == NULL or eSP == NULL) // Check to see if maps are created. 

createElementsSurroundingPoint(); // If not, then create it. 
*neighborElement = -999; // Initialize return value to -999. 
*neighborElementFace = -999; // Do the same with neighborElementFace. 

// i is used as a holder. 
// n 1 is the number of elements surrounding point p 1. 
// done is a variable used as a stopping condition. 
// slndex is the starting index for pi into eSP. 
// positionPl will contain the position on the matching face. 
// positionP2 will contain the position on the matching face. 
// positionP3 will contain the position on the matching face. 

(pl=0) 

{ 
nl = nESP[pl]; // nl is set to nESP[0] if pi is 0. 
slndex = 0;        // slndex is also set to 0. 

} 

int    i = 0; 
int    nl = 0; 
int    done = 0; 
int    slndex = 0; 
int    positionPl = 0; 
int    positionP2 = 0; 
int    positionP3 = 0; 
if(pl=0) 
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else 

{ 
nl = nESP[pl] - nESP[pl-l]; // nl is set by finding difference in values in nESP. 
slndex = nESP[pl-l]; // slndex is the value at index pl-1. 

} 

i = slndex;   // Let i cycle over all elements. 
done = 0;     // Initialize stopping condition to 0. 
while (Idone and i < slndex+n)    // Cycle until a match or no more elements to check. 

{ 
positionPl = -1 
positionP2 = -l 
positionP3 = -1 

// Initialize positionPl. 
// Initialize positionP2. 
// Initialize positionP3. 

if (eSP[i] != insideThisElement) // Check for found a match. 

{ 
if (eSP[i] >= tetlndex and eSP[i] < pents5Index) // Check for match in tetrahedra. 

{ 
if (tetrahedra[eSP[i]][0] == pi) 

positionPl = 0; 
else if (tetrahedra[eSP[i]][l] == pi) 

positionPl = 1; 
else if (tetrahedra[eSP[i]][2] = pi) 

positionPl = 2; 
else if (tetrahedra[eSP[i]][3] == pi) 

positionPl = 3; 

if (tetrahedra[eSP[i]][0] == p2) 
positionP2 = 0; 

else if (tetrahedra[eSP[i]][l] == p2) 
positionP2 = 1; 

else if (tetrahedra[eSP[i]][2] == p2) 
positionP2 = 2; 

else if (tetrahedra[eSP[i]][3] == p2) 
positionP2 = 3; 

if (tetrahedra[eSP[i]][0] == p3) 
positionP3 = 0; 

else if (tetrahedra[eSP[i]][l] == p3) 
positionP3 = 1; 

else if (tetrahedra[eSP[i]][2] == p3) 
positionP3 = 2; 

else if (tetrahedra[eSP[i]][3] == p3) 
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positionP3 = 3; 

if (positionPl >= 0 and positionP2 >= 0 and positionP3 >= 0) 

{ 
*neighborElement = eSP[i]; 
if (positionPl != 3 and positionP2 != 3 and positionP3 != 3) 

*neighborElementFace = 0; 
else if (positionPl != 0 and positionP2 != 0 and positionP3 != 0) 

*neighborElementFace = 1; 
else if (positionPl != 1 and positionP2 != 1 and positionP3 != 1) 

*neighborElementFace = 2; 
else 

*neighborElementFace = 3; 

done = 1; // Set stopping condition to 1. 

} 
} // End if (eSP[i] >= tetlndex and eSP[i] < pents5Index) 
else if (eSP[i] >= pents5Index and eSP[i] < pents6Index) 

{ 
if (pents[eSP[i]-pents5Index][0] == pi) 

positionPl = 0; 
else if (pents[eSP[i]-pents5Index][l] == pi) 

positionPl = 1; 
else if (pents[eSP[i]-pents5Index][2] == pi) 

positionPl = 2; 
else if (pents[eSP[i]-pents5Index][3] == pi) 

positionPl = 3; 
else if (pents[eSP[i]-pents5Index][4] == pi) 

positionPl = 4; 

if (pents[eSP[i]-pents5Index][0] == p2) 
positionP2 = 0; 

else if (pents[eSP[i]-pents5Index][l] == p2) 
positionP2 = 1; 

else if (pents[eSP[i]-pents5Index][2] == p2) 
positionP2 = 2; 

else if (pents[eSP[i]-pents5Index][3] == p2) 
positionP2 = 3; 

else if (pents[eSP[i]-pents5Index][4] == p2) 
positionP2 = 4; 

if (pents[eSP[i]-pents5Index][0] == p3) 
positionP3 = 0; 

else if (pents[eSP[i]-pents5Index][l] == p3) 
positionP3= 1; 
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else if (pents[eSP[i]-pents5Index][2] == p3) 
positionP3 = 2; 

else if (pents[eSP[i]-pents5Index][3] == p3) 
positionP3 = 3; 

else if (pents[eSP[i]-pents5Index][4] == p3) 
positionP3 = 4; 

if (positionPl >= 0 and positionP2 >= 0 and positionP3 >= 0) 

{ 
*neighborElement = eSP[i]; 
if (positionPl != 4 and positionP2 != 4 and positionP3 != 4 && 

positionPl != 3 and positionP2 != 3 and positionP3 != 3) 

{ 
*neighborElementFace = 0; 
done =1; 

} 
else if (positionPl != 0 and positionP2 != 0 and positionP3 != 0 && 

positionPl != 3 and positionP2 != 3 and positionP3 != 3) 

{ 
*neighborElementFace = 1; 
done =1; 

} 
else if (positionPl != 0 and positionP2 != 0 and positionP3 != 0 && 

positionPl != 1 and positionP2 != 1 and positionP3 != 1) 

{ 
*neighborElementFace = 3; 
done =1; 

} 
else if (positionPl != 1 and positionP2 != 1 and positionP3 != 1 && 

positionPl != 4 and positionP2 != 4 and positionP3 != 4) 

{ 
*neighborElementFace = 4; 
done =1; 

} 
} // End if (positionPl >= 0 and positionP2 >= 0 and positionP3 >= 0) 

} // End else if (eSP[i] >= pents5Index and eSP[i] < pents6Index) 
} // End if (eSP[i] != insideThisElement) 
i++; // Increment to the next element id in the list. 

} // End while loop to cycle for a match. 
} // End commonElement routine. 
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void createVolumeChunkingC int numXDivisions, // Number of X subdivisions. 
int numYDivisions, // Number of Y subdivisions, 
int numZDivisions) // Number of Z subdivisions. 

{ 
int i = 0; 
int j = 0; 
int k = 0; 
int numVolumes = numXD 
int vlndex = 0; 
int Pi = 0; 
int p2 = 0; 
int p3 = 0; 
int p4 = 0; 
int plXIndex = 0; 
int plYIndex = 0; 
int plZIndex = 0; 
INT.1D *tetsInVolume = NULL; 
INT-ID *tNumTetsIn Volume = NULL; 
INTJD *numTetsIn Volume = NULL; 
double xlnc = 0.0; 
double ylnc = 0.0; 
double zinc = 0.0; 
DOUBLE .3D Min; 
DOUBLE _3D Max; 
getBoundingBox(Min,Max); 

// i is used as a counting variable. 
//j is used as a counting variable. 
// k is used as a counting variable. 

= numXDivisions*numYDivisions*numZDivisions; 
// Used as an index into chunking structure. 
// Used to contain the index for point 1. 
// Used to contain the index for point 2. 
// Used to contain the index for point 3. 
// Used to contain the index for point 4. 
// The X direction index for point 1. 
// The Y direction index for point 1. 
// The Z direction index for point 1. 
// Contains element indices into chunks. 
// Temp for constructing numTetsInVolume. 
// Contains number of tets in chunk. 
// xlnc is the increment in the X direction. 
// ylnc is the increment in the Y direction. 
// zinc is the increment in the Z direction. 
// Contains min bounding box information. 
// Contains max bounding box information. 

// Get the bounding box extremes. 

xlnc = (Max[0]-Min[0])/(numXDivisions*1.0); 
ylnc = (Max[l]-Min[l])/(numYDivisions*1.0); 
zinc = (Max[2]-Min[2])/(numZDivisions*1.0); 

// Calculate the x increment. 
// Calculate the y increment. 
// Calculate the z incument. 

numTetsIn Volume = new INT_lD[numVolumes+l]; // Allocate memory. 
tNumTetsInVolume = new INT_1D[numVolumes];   // Allocate temporary array, 
for (i = 0; i < numVolumes; i++) // Cycle over all volumes. 

tNumTetsInVolume[i] = 0; // Initialize all in array to 0. 

// Cycle over all tetrahedra in the volume grid, 
for (i = 0; i < numberOfVolumeTetrahedra; i++) 

{ 
pi = tetrahedra[i][0]; 
p2 = tetrahedra[i][l]; 
p3 = tetrahedra[i][2]; 
p4 = tetrahedra[i][3]; 

//Point index for PI. 
// Point index for P2. 
// Point index for P3. 
// Point index for P4. 
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// Calculate the X index for point PI. 
plXIndex = (int)(((coordinates[pl][0]-Min[0])/(Max[0]-Min[0]))*numXDivisions); 
// Calculate the Y index for point PI. 
plYIndex = (int)(((coordinates[pl][l]-Min[l])/(Max[l]-Min[l]))*numYDivisions); 
// Calculate the Z index for point PI. 
plZIndex = (int)(((coordinates[pl][2]-Min[2])/(Max[2]-Min[2]))*numZDivisions); 
// If the calculated X index is at the edge of the voHme, decrement it. 
if (plXIndex == numXDivisions) 

plXIndex-; 

// If the calculated Y index is at the edge of the volume, decrement it. 
if (pi YIndex == numYDivisions) 

plYIndex-; 
// If the calculated Z index is at the edge of the volume, decrement it. 
if (plZIndex == numZDivisions) 

plZIndex-; 

// Calculate the index into the volume chunking structure, 
vlndex = plXIndex*numYDivisions*numZDivisions + 

pi YIndex*numZDivisions + 
plZIndex; 

tNumTetsInVolume[vIndex]++; // Increment num tets in volume. 
} // End cycle over all tetrahedra in input grid. 

Initialize the first value in the array to 0. 
numTetsInVblume[0] = 0; 
// Set the values in the actual array in the manner similar to 
// nESP shown in the construction of elements surrounding a point. 
for (i = 1; i <= num Volumes; i++) 

numTetsInVolume[i] = numTetsInVolume[i-l] + 
tNumTetsInVolumefi-1 ]; 

// Deallocate the memory just used in construction of numTetsInVolume. 
delete[] tNumTetsInVolume; 

// Allocate the actual memory that is the volume chunking structure. 
tetslnVolume = new INT_lD[numberOfVolumeTetrahedra]; 
// Cycle over all tetrahedra in the volume grid. 
for (i = 0; i < numberOfVolumeTetrahedra; i++) 

{ 
pi = tetrahedra[i][0] 
p2 = tetrahedra[i][l] 
p3 = tetrahedra[i][2] 
p4 = tetrahedra[i][3] 

// Point index for PI. 
// Point index for P2. 
// Point index for P3. 
// Point index for P4. 
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// Calculate the X index for point PI. 
plXIndex = (int)(((coordinates[pl][0]-Min[0])/(Max[0]-Min[0]))*numXDivisions); 
// Calculate the Y index for point PI. 
plYIndex = (int)(((coordinates[pl][l]-Min[l])/(Max[l]-Min[l]))*numYDivisions); 
// Calculate the Z index for point PI. 
plZIndex = (int)(((coordinates[pl][2]-Min[2])/(Max[2]-Min[2]))*numZDivisions); 
// If the calculated X index is at the edge of tik volume, decrement it. 
if (plXIndex == numXDivisions) 

plXIndex-; 
// If the calculated Y index is at the edge of the volume, decrement it. 
if (pi YIndex == numYDivisions) 

plYIndex-; 
// If the calculated Z index is at the edge of the volume, decrement it. 
if (plZIndex == numZDivisions) 

plZIndex-; 

// Calculate the index into the volume chunking structure, 
vlndex = plXIndex*numYDivisions*numZDivisions + 

plYIndex*numZDivisions + 
plZIndex; 

// Place this element i into the chunking structure indicated by vlndex. 
tetsInVolume[numTetsInVolume[vIndex]] = i; 
// Increment the number of elements in this volume chunk by one. 
numTetsInVolume[vIndex]++; 

} // End cyle over all tetrahedra in input grid. 
} // End createVolumeChunking. 
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void getEIementContainingPoint( double x, // x value of the point. 
double y, // y value of the point. 
double z, // z value of the point. 
int *e, // Contains the element found upon return. 

// May also contain starting element for search. 
INT_1D * visited, // Contains visit info for each element, 
int visit, // Current visit id. 
Boolean useChunking, // Flag to tell routine that 

// volume chunking used to set 
// starting element, 

int bruteForce) // Flag to tell routine that if element 
// not found in search, use brute force 
// searching to cycle through all elements 
// not visited. 

int xlndex =0; 
int y Index = 0; 
int zlndex = 0; 
int vlndex = 0; 
int slndex = 0; 
int elndex =0; 
int tetlndex= 0; 
double VI        =0.0 
double V2       = 0.0 
double V3       = 0.0 
double V4       = 0.0 

// The xlndex for the given point. 
// The ylndex for the given point. 
// The zlndex for the given point. 
// vlndex is the index into volume chunking. 
// slndex is the index into numTetsInVolume. 
// elndex is the index into numTetsIn Volume. 
// Place holder for possible containing element. 
// Sub volume 1 of candidate tetrahedra. 
// Sub volume 2 of candidate tetrahedra. 
// Sub volume 3 of candidate tetrahedra. 
// Sub volume 4 of candidate tetrahedra. 

DOUBLE _3D Min; // Minimum value of bounding volume. 
DOUBLE3D Max; // Maximum value of bounding volume. 
// The volume chunking is based on the bounding box of all input data. 
getBoundingBox(Min,Max); 

if (useChunking) 

{ 
// Calculate the x index for the x value sent into the search. 
xlndex = (int)(((x-Min[0])/(Max[0]-Min[0]))*numXDivisions); 
// Calculate the y index for the y value sent into the search. 
ylndex = (int)(((y-Min[l])/(Max[l]-Min[l]))*numYDivisions); 
// Calculate the z index for the z value sent into the search. 
zlndex = (int)(((z-Min[2])/(Max[2]-Min[2]))*numZDivisions); 
// If the xlndex is at the edge of the volume, decrement it. 
if (xlndex == numXDivisions) 

xlndex-; 
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} 

// If the ylndex is at the edge of the volume, decrement it. 
if (ylndex == numYDivisions) 

ylndex-; 
// If the zlndex is at the edge of the volume, decrement it. 
if (zlndex == numZDivisions) 

zlndex-; 

// Calculate the volume index into the volume chunking structure, 
vlndex = xIndex*numYDivisions*numZDivisions + 

yIndex*numZDivisions + 
zlndex; 

// Initialize start and end indices to be zero, 
slndex = 0; 
elndex = 0; 

// If the volume chunking index is zero, then slndex is zero, 
if (vlndex == 0) 

slndex = 0; 
// Else, find the start index for the elements in this volume chunk, 
else 

slndex = numTetsInVolume[vIndex-l]; 

// The ending index is the value at vlndex. 
elndex = numTetsInVolumefvIndex]; 
// If slndex and elndex are the same, then there are no elements in this chunk. 
if (elndex == slndex) 

*e = 0; 
// Else, set a candidate element to the first element listed in the chunk, 
else 

*e = tetsInVolume[sIndex]; 

// element is used as a placeholder for the current element index, 
element = *e; 

// Call the recursive search algorithm with this candidate element index. 
// If useChunking is False, then the recursive search starts with an 
// element that is passed in through e. 
recursiveSearch(x,y,z,element,e,&found,visited,visit,tolerance); 

// If the containing element has not been found and bruteForce flag is True, 
if (found == 0 and bruteForce) 

{ 
// Calculate the x index for the x value sent into the search. 
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xlndex = (int)(((x-Min[0])/(Max[0]-Min[0]))*numXDivisions); 
// Calculate the y index for the y value sent into the search, 
ylndex = (int)(((y-Min[l])/(Max[l]-Min[l]))*numYDivisions); 
// Calculate the z index for the z value sent into the search, 
zlndex = (int)(((z-Min[2])/(Max[2]-Min[2]))*numZDivisions); 

// If the xlndex is at the edge of the volume, decrement it. 
if (xlndex == numXDivisions) 

xlndex-; 
// If the ylndex is at the edge of the volume, decrement it. 
if (ylndex == numYDivisions) 

ylndex-; 
// If the zlndex is at the edge of the volume, decrement it. 
if (zlndex == numZDivisions) 

zlndex-; 

// Calculate the volume index into the volume chunking structure, 
vlndex = xIndex*numYDivisions*numZDivisions + 

yIndex*numZDivisions + 
zlndex; 

// Initialize start and end indices to be zero, 
slndex = 0; 
elndex = 0; 

// If the volume chunking index is zero, then slndex is zero, 
if (vlndex ==0) 

slndex = 0; 
// Else, find the start index for the elements in this volume chunk, 
else 

slndex = numTetsInVolume[vIndex-l]; 
// The ending index is the value at vlndex. 

elndex = numTetsInVolume[ vlndex]; 

// Cycle over all elements in this volume chunk, 
for (i = slndex; i < elndex; i++) 

{ 
// Dereference the index for this element in this chunk. 
tetlndex = tetsInVolume[i]; 

// Check this element only if it has not already been visited, 
if (visited[tetlndex] != visit) 
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{ 
// Set the visited flag for this element. 
visited[tetlndex] = visit; 

// Check whether this element contains the given point. 
found = doesEIementContainThisPoint(x,y,z,tetIndex,tolerance, 

&V1,&V2,&V3,&V4); 
if (found) 

{ 
*e = tetlndex; 
return; 

} 
} // End if (visited[tetlndex] != visit) 

} // End for (i = slndex; i < elndex; i++) 
*e = -999; 

} // End if (found == 0 and bruteForce) 
else if (found == 0 and IbruteForce) 
*e = -999; 

} // End getElementContainingPoint. 
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void recursiveSearch( double x, // x value of point given, 
double y, // y value of point given, 
double z, // z value of point given, 
int element, // element currently inside, 
int *e, // return value for element found, 
int *found, // returns whether element found. 
INTJD * visited, // array containing visited flags for each element, 
int visit, // current visit id. 
double tolerance) // tolerance for element containment. 

{ 
double VI = 0.0 
double V2 = 0.0 
double V3 = 0.0 
double V4 = 0.0 
Boolean foundF ag =Fal 

// Sub volume one of the given tetrahedra. 
// Sub volume two of the given tetrahedra. 
// Sub volume three of the given tetrahedra. 
// Sub volume four of the given tetrahedra. 

foundFlag = False; // Flag to determine whether element found. 
// Set the visited flag for this element to the current visit id. 
visited[element] = visit; 
// Check whether this element contains the given point. 
foundFlag = doesElementContainThisPoint(x,y,z,element,tolerance, 

&V1,&V2,&V3,&V4); 
// If this element contains the given point, we are done, 
if (foundFlag) 

{ 
*e = element; 
*found =1; 
return; 

} 
// Else, we have to go through each of the neighbors connected to this element. 
else 

{ 
// If the calculated sub volume is negative and the element has not been found, 
if (VI < 0.0 and *found != 1) 

{ 
// If neighbor 2 exists and it has not already been visited, 
if (eN[element][l] >= 0 and visited[eN[element][l]] != visit) 

{ 
// Call the recursive searching routine with element neighbor 2. 
recursiveSearch( x, 

y. 
z, 
eN[element][l], 
e, 
found, 
visited, 
visit, 
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} 

tolerance); 

} 

// If the calculated sub volume is negative and the element has not been found, 
if(V2<0.0and*for.r.d!=l) 

{ 
// If neighbor 3 exists and it has not already been visited, 
if (eN[element][2] >= 0 and visited[eN[element][2]] != visit) 

{ 
// Call the recursive searching routine with element neighbor 3. 
recursiveSearch( x, 

y. 
z, 
eN[element][2], 

found, 
visited, 
visit, 
tolerance); 

} 
} 

// If the calculated sub volume is negative and the element has not been found, 
if(V3<0.0and*found!=l) 

{ 
// If neighbor 4 exists and it has not already been visited, 
if (eN[elemen..]jJ] >= 0 and visited[eN[element][3]] != visit) 

{ 
// Call the recursive searching routine with element neighbor 4. 
recursiveSearch( x, 

y. 
z, 
eN[element][3], 

found, 
visited, 
visit, 

} 

tolerance); 

} 
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// If the calculated sub volume is negative and the element has not been found, 
if(V4<0.0and*found!=l) 

{ 
// If neighbor 0 exists and it has not already been visited, 
if (eN[element][0] >= 0 and visited[eN[element][0]] != visit) 

{ 
// Call the recursive searching routine with element neighbor <\ 
recursiveSearch( x, 

y. 
z, 
eN[element][0], 
e, 
found, 
visited, 
visit, 
tolerance); 

} 
} 

} // End else. 
} // End recursiveSearch. 
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int        pi = 0; 
int        p2 = 0; 
int        p3 = 0; 
int        p4 = 0; 
double V = 0.0 
double volmin = 0.0 
double w = 0.0 

Boolean doesElementContainThisPoint( double x, 
double y, 
double z, 
int element, 
double tolerance, 
double *V1, 
double *V2, 
double *V3, 
double *V4) 

{ 
// pi is the point 1 index. 
// p2 is the point 2 index. 
// p3 is the point 3 index. 
// p4 is the point 4 index. 
// V is the volume of the element. 
// volmin holds a minimum volume. 
// w is a weighting factor, 

pi     = tetrahedra[element][0]; 
p2    = tetrahedra[element] [ 1 ]; 
p3     =tetrahedra[element][2]; 
p4    = tetrahedra[element][3]; 

// Calculate the volume of the tetrahedra indicated by element. 
V     = calculate Volume(coordinates [pi], 

coordinates [p2], 
coordinates [p3], 
coordinates [p4]); 

// VI is the volume created by the given point, point P2, point P3, and point P4. 
*V 1 = calculateVolume(X,coordinates[p2],coordin.lies[p3],coordinates[p4]); 

// V2 is the volume created by the given point, point PI, point P4, and point P3. 
*V2 =calculateVolume(X,coordinates[pl],coordinates[p4],coordinates[p3]); 

// V3 is the volume created by the given point, point P4, point PI, and point P2. 
* V3 = calculate Volume(X,coordinates [p4] coordinates [p 1 ] coordinates [p2]); 

// Because V1+V2+V3+V4 must be 1.0, then V4 is given as, 
*V4 = 1.0 - (*V1) - (*V2) - (*V3); 

// Find the minimum of all of the subvolumes VI, V2, V3, and V4. 
volmin = MIN ((*V1), MIN ((*V2), MIN ((*V3), (*V4)))); 

// Weight this by a tolerance multiplied by the volume of the element, 
w = volmin + tolerance * V; 
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if (w > = 0.0)       // If the weighting is positive, 
return True;   // this element contains the given point. 

else // else, 
return False;  // this element does not contain the given point. 

} // End doesElementContainThisPoint. 
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void calculateCuttingPlane( DOUBLE3D point, // A point on the cutting plane. 
DOUBLE.3D normal, // The normal to the cutting plane, 
double tolerance, // A tolerance for intersections, 
int *nAllocatedSurface, // Current size of Tris. 
int *nPts, // Number of points in extraced surface. 
DOUBLE 3D **Pts, // List of resulting points, 
int *nTris, // Number of triangles in extraced surface. 
INT -3D **Tris, // List of resulting triangle point indices. 
INT_1D **EFPts, // List of element ids that correspond 

// to points in extracted surface, 
int gridlndex, // If dealing with multiple grids, 

// then gridlndex will vary. 
INT_1D *nAllocatedElement,// Current size of the array Elem. 
INTJD **nElem, // Number of intersected elements in grid 

// indicated by gridlndex. 
INTJD **Elem) // List of intersected element ids in 

// extracted surface. 

{ 
Boolean   f 1    = False; 

Boolean   f2   = False; 

Boolean   f3   = False; 

Boolean   f4   = False; 

// Indicates whether face 1 of the current 
// element has been intersected. 
// Indicates whether face 2 of the current 
// element has been intersected. 
// Indicates whether face 3 of the current 
// element has been intersected. 
// Indicates whether face 4 of the current 
// element has been intersected. 

Boolean *eVisited   = 

int 

int 

int 

int 

int 

int 

int 

int 

int 

nElements 
i 

j 

e 
plndex 
elndex 
inPts 
inTris 

0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 
= 0 

int it[6]; 

int pit[6]; 

int glndex[6]; 

NULL; // Array to contain whether element has been 
// visited in surface extraction routine. 
// The number of elements 
// i is used as a counting variable. 
//j is used as a counting variable. 
// k is used as a counting variable. 
// Contains local element id. 
// plndex contains a point index. 
// elndex contains an element index. 
// The local number of intersection points per element. 
// The local number of triangles generated from element 
// plane intersection. 
// Contains whether each edge of the tetrahedra has 
// been intersected or not. 
// Contains the intersection point on each edge of the 
// tetrahedra. 
// Contains global index of intersection point in the 
// array Pts. 
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int pglndex[6]; 

INTJD * visited 

INTJD *eit 
INTJD *eglndex 
INTJD *iTris 

// Contains previous intersection points global index in the 
// array Pts. 

= NULL; // Array to contain whether element has been 
// visited for use in point containment. 

= NULL; // Contains all elements intersection indicators. 
= NULL; // Contains all elements global index values in the array Pts. 
= NULL; // Contains the local triangles cut on a per element basis. 

double 

double 

double 

double 

double 

tO     = 0.0; 

tl      =0.0; 

t2     = 0.0; 

Ü      = 0.0; 

tol    = 0.0; 

DOUBLEJD pO; 
DOUBLE_3D pi; 
DOUBLE3D p2; 
DOUBLEND p3; 
DOUBLEND ppt[6]; 
DOUBLEJ3D pt[6]; 
DOUBLEJ3D *iPts = NULL; 
DOUBLEJ3D  *ept =NULL; 

// Variable to determine edge crossings for 
// those containing point 0. 
// Variable to determine edge crossings for 
// those containing point 1. 
// Variable to determine edge crossings for 
// those containing point 2. 
// Variable to determine edge crossings for 
// those containing point 3. 
// Local cutting tolerance based on tolerance passed 
// into routine. 
// Variable to contain values for point 0. 
// Variable to contain values for point 1. 
// Variable to contain values for point 2. 
// Variable to contain values for point 3. 
// Previous elements intersection point. 
// Local elements intersection points. 
// Local elements intersection points. 
// Contains all intersection points for all elements. 

// Allocate the memory for recording element visits. 
eVisited   = new Boolean[numberOfVblumeTetrahedra]; 
// Allocate the memory for element containment visits. 
visited      = new INT J D [numberOfVblumeTetrahedra]; 
// Allocate the memory to record all intersection indicators for all elements. 
eit = new INTJD[numberOfVolumeTetrahedra*6]; 
// Allocate the memory to record global index for intersection points for all elements. 
eglndex    = new INT_lD[numberOfVolumeTetrahedra*6]; 
// Allocate the memory to handle local intersections on per element basis. 
iTris        = new INTJ3D[20]; 
// Allocated to store local intersection points on per element basis. 
iPts = new DOUBLE J3D [20]; 
// Allocated to record all intersection points for all elements. 
ept = new DOUBLE 3D [numberOfVolumeTetrahedra*6]; 

i = 0; // i is used as a global index. 
// For all tetrahedra in the input grid, initialize global structures. 
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for (j = 0; j < numberOfVolumeTetrahedra*6; j++) 

{ 
eit[i] = 0; // Initialize intersection indicators to 0. 
ept[i][0] = 0.0; // Initialize x intersection point value to 0.0. 
ept[i][l] = 0.0; // Initialize y intersection point value to 0.0. 
ept[i][2] = 0.0; // Initialize z intersection point value to 0.0. 
eglndex[i] = -999; // Initialize global index to 0. 
i++; // Increment the global index. 

} 

*nPts = 0; // Initialize the number of points to 0. 
*nTris = 0; // Initialize the number of triangles to 0. 

for (i = 0; i < gridlndex; i++) // For each grid that is being cut, 
nElements += (*nElem)[gridIndex];    // find the total number of elements. 

// Cycle over all tetrahedra in the input grid and initialize visits. 
for (i = 0; i < numberOfVolumeTetrahedra; i++) 

{ 
visitedfi] = 0; // Initialize visited for searching all to visit 0. 
eVisited[i] = False; // Initialize all elements to not visited. 

} 

getElementContainingPoint( point[0], // X value of point on the cutting plane. 
point[l], // Y value of point on the cutting plane. 
point[2], // Z value of point on the cutting plane. 
&e, // Element containing this point is returned in e. 
visited, // Contains current visits for each element. 
1, // The visit flag for this round of searching. 
1E-5, // Provide a tolerance for element containment. 
True, // Get a starting element using chunking scheme. 
True ); // If point is not found locally, search globally. 

p0[0] = coordinates[tetrahedra[e][0]][0]; // Set x value of point 0. 
p0[l] = coordinatesftetrahedra[e][0]][l]; // Set y value of point 0. 
p0[2] = coordinates[tetrahedra[e][0]] [2]; // Set z value of point 0. 

pi [0] = coordinates[tetrahedra[e][l]][0]; // Set x value of point 1. 
pl[l] = coordinates[tetrahedra[e][l]][l]; // Set y value of point 1. 
pl[2] = coordinates[tetrahedra[e][l]][2]; // Set z value of point 1. 

p2[0] = coordinates[tetrahedra[e] [2]][0]; // Set x value of point 2. 
p2[l] = coordinates[tetrahedra[e][2]][l]; // Set y value of point 2. 
p2[2] = coordinates[tetrahedra[e][2]][2]; // Set z value of point 2. 
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p3[0] = coordinates [tetrahedra[e] [3 ]][0]; // Set x value of point 3. 
p3[l] = coordinates[tetrahedra[e][3]][l]; // Set y value of point 3. 
p3[2] = coordinates[tetrahedra[e][3]][2]; // Set z value of point 3. 

tO = (p0[0] - point[0]) * normal[0] + 
(pO[l] - point[l]) * normal[l] + 
(p0[2] - point[2]) * normal[2]; 

tl = (pl[0] - point[0]) * normal[0] + 
(pi [1] - point[l]) * normal[l] + 
(pi [2] - point[2]) * normal[2]; 

t2 = (p2[0] - point[0]) * normal[0] + 
(p2[l] - point[l]) * normal[l] + 
(p2[2] - point[2]) * normal[2]; 

t3 = (p3[0] - point[0]) * normal[0] + 
(p3[l] - point[l]) * normal[l] + 
(p3[2] - point[2]) * normal[2]; 

// Compute the dot product 
// of vector from planar point to 
// point 0 and the normal to the plane. 

// Compute the dot product 
// of vector from plane point to 
// point 0 and the normal to the plane. 

// Compute the dot product 
// of vector from plane point to 
// point 0 and the normal to the plane. 

// Compute the dot product 
// of vector from plane point to 
// point 0 and the normal to the plane. 

// Base tolerance on the max edge length and machine precision, 
tol = (getMaxEdgeLength(e))*tolerance; 

// If the cutting plane intersects this tetrahedra, 
if ((tO >= -tol and tl <= tol) or (tO <= tol and tl >= -tol) or 

(tO >= -tol and t2 <= tol) or (tO <= tol and t2 >= -tol) or 
(tO >= -tol and t3 <= tol) or (tO <= tol and t3 >= -tol) or 
(tl >= -tol and t2 <= tol) or (tl <= tol and t2 >= -tol) or 
(tl >= -tol and t3 <= tol) or (tl <= tol and t3 >= -tol) or 
(t2 >= -tol and t3 <= tol) or (t2 <= tol and t3 >= -tol)) 

{ 
for (i = 0; i < 6; i++) 

{ 
pt[i][0] = 0.0; 
pt[i][l] = 0.0; 
pt[i][2] = 0.0; 
it[i] = 0; 
glndex[i] = 0; 

ppt[i][0] = 0.0 
ppt[i][l] = 0.0 
ppt[i][2] = 0.0 
pit[i] = 0; 
pglndex[i] = 0; 

// For all potential intersection points, 

// Initialize x intersection to 0.0. 
// Initialize y intersection to 0.0. 
// Initialize z intersection to 0.0. 
// Initialize intersection indicator to 0. 
// Initialize global index values to 0. 

// Initialize previous x intersection to 0.0. 
// Initialize previous x intersection to 0.0. 
// Initialize previous x intersection to 0.0. 
// Initialize previous intersection indicator to 0. 
// Initialize previous global index values to 0. 
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} 
// Calculate the intersection with the plane and the tetrahedra. 
intersectPlaneWithTetrahedra( e, 

point, 
normal, 
pO, 

PL 
P2, 
p3, 
to, 
tl, 
t2, 
t3, 
&fl, 
&f2, 
&f3, 
&f4, 
tolerance, 
&inPts, 
&iPts, 
&inTris, 
&iTris, 
0, 

pit, 

PPt. 
pglndex, 
it, 

Pt, 

glndex, 
False, 
eN, 
-1, 
-1, 
eit, 
ept, 
eglndex); 

The element id for the tetrahedra. 
The point on the cutting plane. 
The normal to the cutting plane. 
Point 0 on the tetrahedra. 
Point 1 on the tetrahedra. 
Point 2 on the tetrahedra. 
Point 3 on the tetrahedra. 
Cut parameter for point 0. 
Cut parameter for point 1. 
Cut parameter for point 2. 
Cut parameter for point 3. 
Returns whether face 1 is cut or not. 
Returns whether face 2 is cut or not. 
Returns whether face 3 is cut or not. 
Returns whether face 4 is cut or not. 
Used to determine whether cut or not. 
Local number of intersection points. 
Local intersection points. 
Local number of intersection triangles. 
Local intersection triangles. 
Current index into the array containing 
all intersection points. 
Previous elements intersection indicators. 
Previous elements int. point values. 
Global index of previous intersections. 
Current elements intersection indicators 
(to be determined). 
Current elements int. point values 
(to be determined). 
Current global index in global pts. array. 
Flag to remove duplicate int. 
Element neighbor array. 
Previous element index. 
Face id from prev. element. 
Int. indicators for all cut elements. 
Int. point values for all cut elements. 
Global pt. indices for all cut elements. 

// If recording the current element information would exceed allocated memory, 
// then reallocate more memory, 
if (*nAllocatedElement == nElements) 

reallocate memory 
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(*Elem)[nElements++] = e;        // Store the element that has just been intersected. 
(*nElem)[gridIndex]++; // Increment the number of elements for the grid that 

// it belongs to. 

// If recording the current triangle information would exeed allocated memory, 
// then reallocate more memory, 
if (*nAllocatedSurface -= inTris) 

reallocate memory 

plndex = *nPts; // Store the current index as of now. 
for (i = 0; i < inPts; i++) // For all intersection points just found, 

{ 
(*Pts)[*nPts][0] = iPts[i][0]; // Store the x value of the intersection point. 
(*Pts)[*nPts][l] = iPts[i][l]; // Store the y value of the intersection point. 
(*Pts)[*nPts][2] = iPts[i][2]; // Store the z value of the intersection point. 
(*EFPts)[*nPts] = e; // Store the element that has just been cut. 
(*nPts)++; // Increment number of points in the cutting plane. 

} 

for (i = 0; i < inTris; i++) // For all triangles formed from the cut, 

{ 
(*Tris)[*nTris][0] = iTris[i][0]; // Store first point index. 
(*Tris)[*nTris][l] = iTris[i][l]; // Store second point index. 
(*Tris)[*nTris][2] = iTris[i][2]; // Store third point index. 
(*nTris)++; // Increment the number of triangles in the 

// cutting plane. 

} 

// Find the cut elemet.cs index in the global element array, 
elndex = e*6; 

// For all possible intersection points, 
for (i = 0; i < 6; i++) 

{ 
// If this intersection indicator says edge has been cut, 
if(it[i]) 

{ 
ept[elndex][0] = pt[i][0]; // Store the x point value. 
ept[elndex][l] = pt[i][l]; // Store the y point value. 
ept[elndex][2] = pt[i][2]; // Store the z point value. 
eit[elndex] = it[i]; // Store the intersection indicator. 

// Store the global index for the point into the Pts array, 
eglndex [elndex] = glndex[i]; 
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ppt[i] [0] = pt[i] [0]; // Make this x value the previous x value. 
ppt[i][l] = pt[i][l];//Make this y value the previous y value. 
ppt[i][2] = pt[i][2];//Make this z value the previous z value. 
pit[i] = it[i]; // Make this intersection indicator the previous 

// intersection indicator. 

// Make this global index the previous global index. 
pglndex[i] = glndex[i] = plndex; 
plndex++;     // Increment the current index into Pts. 

} 
elndex++;     // Increment index into global information array. 

} 
eVisited[e] = True;  // Set this element as having been visited. 
recursivelyCalculateCut( point, // The point in the cutting plane. 

normal, // The normal to the cutting plane. 
tolerance, // User defined tolerance passed in originally. 
nAllocatedSurface, // The size of the Tris array right now. 
nPts, // Contains the number of points currently in cut. 
Pts, // Contains the points currently in the cut. 
nTris, // Contains the number of triangles currently in cut. 
Tris, // Contains the triangles currently in the cut. 
EFPts, // Contains element index for each point in the cut. 
nAllocatedElement, // The size of the Elem array right now. 
nElem, // Number of elements that have been currently cut. 
Elem, // The elements that have been currently cut. 
e, // The element that the algorithm has just cut. 
f 1, // Flag indicating whether face 1 of e has been cut. 
f2, // Flag indicating whether face 2 of e has beer cut. 
f3, // Flag indicating whether face 3 of e has been cut. 
f4, // Flag indicating whether face 4 of e has been cut. 
eVisited, // Contains whether elements have been visited. 
inPts, // Contains number of local intersection points. 
iPts, // Contains local intersection points. 
inTris, // Contains number of local intersection triangles. 
iTris, // Contains local intersection triangles. 
gridlndex, // Contains the number of grids being cut. 
&nElements, // The total number of elements in all grids. 
ppt, // Previous intersection points. 
pit, // Previous intersection indicators. 
pglndex, // Prev. global indices in Pts for int. pts. 
pt, // Current intersection points. 
it, // Current intersection indicators. 
glndex, // Current global indices in Pts for int. pts. 
ept, // Contains all int. pts. for cut elements. 
eit, // Contains all int. indicators for cut elements. 



177 

eglndex ); // Contains all global indices into Pts for int. pts. 
} // End if tetrahedra intersects the cutting plane. 

} // End calculateCuttingPlane. 
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void recursiveIyCalculateCut( DOUBLE_3D point, // The point on the plane. 
DOUBLE 3D normal, // The normal to the cutting plane, 
double tolerance, // User defined tolerance passed in originally, 
int *nAllocatedSurface, // The size of the Tris array right now. 
int *nPts, // Contains number of points currently in the cut. 
DOUBLEJ3D **Pts, // Contains the points currently recorded, 
int *nTris, // The number of triangles currently in the cut. 
INT 3D **Tris, // Contains the triangles currently in the cut. 
INT-ID **EFPts, // Contains element indices for each cut pt. 
INTJD *nAllocatedElement, // The size of the Elem array now. 
INTJD **nElem, // Number of elements in the current cut. 
INT.1D **Elem, // Elements in the current cut. 
int e, // Current element. 
Boolean f 1, // Flag indicating whether face 1 of e has been cut. 
Boolean f2, // Flag indicating whether face 2 of e has been cut. 
Boolean f3, // Flag indicating whether face 3 of e has been cut. 
Boolean f4, // Flag indicating whether face 4 of e has been cut. 
Boolean *visited, // Allocated in auxiliary for element visited, 
int inPts, // Contains number of local intersection points. 
DOUBLE.3D *iPts, // Contains local intersection points, 
int inTris, // Contains number of local intersection triangles. 
INT .3D *iTris, // Contains local intersection triangles. 
int gridlndex, // Number of grids being cut. 
int *nElements, // The total number of elements in all grids. 
DOUBLEJ3D ppt[6], // Previous elements intersection points. 
INT-ID pit[6], // Previous elements intersection indicators. 
INTJD pglndex[6], // Previous elements global point indices. 
DOUBLE.3D pt[6], // Cunent intersection points. 
INT_1D it[6], // Current intersection indicators. 
INTJD glndex[6], // Current global point indices. 
DOUBLEJ3D ept[6], // Global intersection point information. 
INTJD eit[6], // Global intersection indicator information. 
INTJD eglndex[6]) // Global index information. 

{ 
Boolean efl = False; 
Boolean ef2 = False; 
Boolean ef3 = False; 
Boolean ef4 = False; 
int i                 = = 0; 
int plndex       = = 0; 
int elndex       = = 0; 
INTJD spit[6]; 
INTJD spglndex[6]; 
INTJD sit[6]; 
INTJD sglndex[6]; 

// Local variable for whether face 1 cut. 
// Local variable for whether face 2 cut. 
// Local variable for whether face 3 cut. 
// Local variable for whether face 4 cut. 
// Local counting variable. 
// Local point index variable. 
// Local element index variable. 
// Local intersection points. 
// Local previous global index information. 
// Local intersection indicators. 
// Local global index information. 
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double tO = 0.0 // Local intersection parameter for point 0. 

double tl = 0.0 // Local intersection parameter for point 1. 

double t2 = 0.0 // Local intersection parameter for point 2. 

double t3 = 0.0 // Local intersection parameter for point 3. 

double toi = 0.0 // Local weighted tolerance. 
D0UBLE3D pO; // Local point 0 variable. 
DOUBLE.3D pi; // Local point 1 variable. 
DOUBLEJD p2; // Local point 2 variable. 
DOUBLEJD p3; // Local point 3 variable. 
DOUBLEJD sppt[6]; // Local previous point intersection information 
DOUBLEJD spt[6]; // Local current point intersection information. 

if (fl and eN[e][0] >= 0 and !(visited[eN[e][0]])) 

{ 
for (i = 0; i < 6; i++) 

{ 
sppt[i][0] = ppt[i][0]; 
sppt[i][l] = ppt[i][l]; 
sppt[i][2] = ppt[i][2]; 
spit[i] = pit[i]; 
spglndex[i] = pglndex[i]; 
spt[i][0] = pt[i][0]; 
spt[i][l] = pt[i][l]; 
spt[i][2] = pt[i][2]; 
sit[i] = it[i]; 
sglndex[i] = glndex[i]; 

} 

// For all potential intersections, 

// Record local copy of previous point. 
// Record local copy of previous point. 
// Record local copy of previous point. 
// Record local copy of previous indicator. 
//Record local copy of previous global indices. 
// Record local copy of current point. 
// Record local copy of current point. 
// Record local copy of current point. 
// Record local copy of indicator. 
// Record local copy of global indices. 

visited[eN[e][0]] = True; // Indicate this neighboring element has 'jeen visited. 

// Set the values for point 1 of face 1 of element e. 
p0[0] = coordinates[tetrahedra[eN[e][0]][0]][0]; 
p0[l] = coordinates[tetrahedra[eN[e][0]][0]][l]; 
p0[2] = coordinates[tetrahedra[eN[e][0]][0]][2]; 

// Set the values for point 2 of face 1 of element e. 
pl[0] = coordinates[tetrahedra[eN[e][0]][l]][0]; 
pl[l] = coordinates[tetrahedra[eN[e][0]][l]][l]; 
pi [2] = coordinates[tetrahedra[eN[e][0]][l]][2]; 

// Set the values for point 3 of face 1 of element e. 
p2[0] = coordinates[tetrahedra[eN[e][0]][2]][0]; 
p2[l] = coordinates[tetrahedra[eN[e][0]][2]][l]; 
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p2[2] = coordinates[tetrahedra[eN[e][0]][2]][2]; 

// Set the values for point 4 of face 1 of element e. 
p3[0] = coordinates [tetrahedra[eN[e][0]] [3]] [0] 
p3[l] = coordinates[tetrahedra[eN[e][0]][3]][l] 
p3[2] = coordinates[tetrahedra[eN[e][0]][3]][2] 

// Compute the dot product of vector from planar point to point 0 
// and the normal to the plane. 
tO = (p0[0] - point[0]) * normalfO] + 

(p0[l] - point[l]) * normal[l] + 
(p0[2] - point[2]) * normal[2]; 

// Compute the dot product of vector from planar point to point 1 
// and the normal to the plane. 
tl = (pl[0] - point[0]) * normal[0] + 

(pl[l] - pointtl]) * normal[l] + 
(pi [2] - point[2]) * normal[2]; 

// Compute the dot product of vector from planar point to point 2 
// and the normal to the plane. 
t2 = (p2[0] - pointtf)]) * normal[0] + 

(p2[l] - point[l]) * normal[l] + 
(p2[2] - point[2]) * normal[2]; 

// Compute the dot product of vector from planar point to point 3 
// and the normal to the plane. 
t3 = (p3[0] - point[0]) * normal[0] + 

(p3[l] - pointtiP * normal[l] + 
(p3[2] - pointt2]) * normal[2]; 

// Base tolerance on the max edge length and machine precision, 
tol = (getMaxEdgeLength(eN[e][0]))*tolerance; 

// If the cutting plane intersects this tetrahedra, 
if ((tO >= -tol and tl <= tol) or (tO <= tol and tl >= -tol) or 

(tO >= -tol and t2 <= tol) or (tO <= tol and t2 >= -tol) or 
(tO >= -tol and t3 <= tol) or (tO <= tol and t3 >= -tol) or 
(tl >= -tol and t2 <= tol) or (tl <= tol and t2 >= -tol) or 
(tl >= -tol and t3 <= tol) or (tl <= tol and t3 >= -tol) or 
(t2 >= -tol and t3 <= tol) or (t2 <= tol and t3 >= -tol)) 

{ 
intersectPlaneWithTetrahedra( eN[e] [0], 

point, 
normal, 
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pO, 

PL 
P2, 
p3, 
to, 
tl, 
t2, 
t3, 
&efl, 
&ef2, 
&ef3, 
&ef4, 
tolerance, 
&inPts, 
&iPts, 
&inTris, 
&iTris, 
*nPts, 
spit, 
sppt, 
spglndex, 
sit, 
spt, 
sglndex, 
True, 
eN, 
e, 
0, 
eit, 
ept, 
eglndex); 

// If the memory has been exceeded, then reallocate the memory, 
if (*nAllocatedElement == *nElements) 

reallocate memory. 

// Record the element information and increment the number of elements. 
(*Elem)[(*nElements)++] = eN[e][0]; 
(*nElem)[gridIndex]++; 

// If the surface memory has been exceeded, then reallocate the memory, 
if (*nAllocatedSurface == inTris) 

reallocate memory. 

int index = 0; // Index variable. 
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int beglndex = *nPts;    // Save starting index for this set of intersection points. 

// Cycle over all possible intersections, 
for (i = 0; i < 6; i++) 

{ 
// If an intersection has occurred and the point is not a duplicate, 
if ( sit[i] == 1 and sglndex[i] >= beglndex ) 

{ 
(*Pts)[*nPts][0] = iPts[index][0]; //Record the x value in the Pts array. 
(*Pts)[*nPts][l] = iPts[index][l]; //Record the y value in the Pts array. 
(*Pts)[*nPts][2] = iPts[index][2]; // Record the z value in the Pts array. 
(*EFPts)[*nPts] = eN[e][0]; // Record the element for this point. 
(*nPts)++; // Increment the number of actual points in the cutting plane. 
index++;    // Increment the index. 

} 
} 

// Cycle over all triangles resulting from the intersection, 
for (i = 0; i < inTris; i++) 

{ 
(*Tris)[*nTris][0] = iTris[i][0];   // Record index one of the triangle. 
(*Tris)[*nTris][l] = iTris[i][l];   // Record index two of the triangle. 
(*Tris)[*nTris][2] = iTris[i][2];   // Record index three of the triangle. 
(*nTris)++; // Record the number of triangles. 

} 

eIndex = (eN[e][0])*6; // Dereference element index. 

// Cycle over all possible intersections, 
for (i = 0; i < 6; i++) 

{ 
// If the edge is intersected, 
if(sit[i]) 

{ 
ept[elndex][0] = spt[i][0]; 
ept[elndex][l] = spt[i][l]; 
ept[elndex][2] = spt[i][2]; 
eit[elndex] = sit[i]; 
eglndex[elndex] = sglndexfi]; 

} 
elndex++; 

} 

// Record the x value. 
// Record the y value. 
// Record the z value. 
// Record the intersection indicator. 
// Record the global index. 

// Increment the index. 

recursivelyCalculateCut( point, // The point on the cutting plane. 
normal, // The normal to the cutting plane. 
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tolerance, // User denned tolerance. 
nAllocatedSurface, // Amt of surface info memory. 
nPts, // Number of pts. in the current cutting plane. 
Pts, // The points currently in the cutting plane. 
nTris, // Number of triangles in the current cutting plane. 
Tris, // The triangles currently in the cutting plane. 
EFPts, // The elements for each point in the cutting plane. 
nAllocatedElement, // Amt of element info memory. 
nElem, // The number of elements in the cutting plane. 
Elem, // Element indices intersected by the cutting plane. 
eN[e][0], // The current element. 
ef 1, // Whether face 1 of current element is intersected. 
ef2, // Whether face 2 of current element is intersected. 
ef3, // Whether face 3 of current element is intersected. 
ef4, // Whether face 4 of current element is intersected. 
visited, // Contains visit information for each element. 
inPts, // Local number of intersection points. 
iPts, // Local intersection points. 
inTris, // Local number of intersected triangles. 
iTris, // Local intersected triangles. 
gridlndex, // Number of grids being cut. 
nElements, // Total number of elements in all grids. 
spt, // Previous point intersections. 
sit, // Previous intersection indicators. 
sglndex, // Previous global indices. 
spt, // Current point intersections. 
sit, // Current intersection indicators. 
sglndex, // Current global indices. 
ept, // Global point intersection information. 
eit, // Global intersection indicator information. 
eglndex ); // Global point index information. 

} // End if cutting plane intersects this tetrahedra. 
} //End if (fl and eN[e][0] >= 0 and !(visited[eN[e][0]])) 
if (f2 and eN[e][l] >= 0 and !(visited[eN[e][l]])) 

// Method analogous to that for face 1. 
if (f3 and eN[e][2] >= 0 and !(visited[eN[e][2]])) 

// Method analogous to that for face 1. 
if (f4 and eN[e][3] >= 0 and !(visited[eN[e][3]])) 

// Method analogous to that for face 1. 
} // End recursivelyCalculateCut. 


